ZASQL_PYTHON Telegram 415
Заскуль питона (Data Science)
Как вы знаете, я недавно устроился в WB, проходил собеседования. В общих чертах могу накидать, что ожидают от продуктового аналитика / аналитика данных в 2025 году. Если наберется 250 (400) (500) 🐳, делаем! Постараюсь обрисовать в следующих постах!
Раз вы такие набрали столько много реакций, выкладываю пост про продуктового аналитика / аналитика данных в 2025.

Пост вышел объемный, поэтому дополнительно выпущу пост про основные ошибки в резюме у кандидатов.

📸 Скрининг

< Здесь будет отдельный пост, который поможет его пройти >

📞 Созвон с HR

В некоторых компаниях могут спрашивать зарплатные ожидания на этом этапе + то, чем занимались вы для подбора команды. Зачастую те компании, в которые я собесился, предлагали общий трек, а затем выбор из пула команд на финалах. Этот этап не всегда обязательный, но тут могут спросить что-то из разряда:

1. Кинули монету 10 раз, какая вероятность, что 5 раз выпал орел
2. Условная вероятность, формула Байеса
3. Про доверительные интервалы, формулу MDE, критерии и так далее
4. Что такое параметрические / непараметрические тесты?
5. Что такое p-value?
6. Какие есть ограничения у хи-квадрата, t-теста, z-теста?
7. Что проверяет критерий Манна-Уитни?
8. Что такое A/A тест? A/B тест?


Эти вопросы могут всплыть и на технических секциях, поэтому будьте готовы: если их не задали в начале, это не значит, что их не будет дальше

🔗 Пост про MDE
🔗 Пост про p-value
🔗 Формула Байеса и условная вероятность (очень топовый ресурс, раньше на нем сидел очень часто в вузе для подготовки к важным работам).
🔗 Доверительные интервалы (с ресурса выше)
🔗 Сборник задач про вероятности

* Этот этап необязательный, могут сразу назначить следующие секции

🔥 Техническая секция

Тут может быть все, что угодно, но попробую стандартизировать.

🗯 Тренируем задачи с помощью GPT + материалов, которые я скинул.

❤️ В Яндексе была алгосекция (она не во все команды) + бизнес-секция, где будете решать код и раскручивать абстрактный кейс, 90% на A/B тесты. В свое время я плотно сидел на литкоде + тренировкам по алгоритмам от Яндекса, в некоторые компании также спрашивают алгоритмы. Уровень easy / medium на литкоде.

🌏 В Авито две секции определяют твой грейд (задачи на теорию вероятностей + матрица компетенций), был удивлен, что не было кода. Спросили про опыт в ML.

В других компаниях будут гонять по SQL (шпаргалка тут, поможет), Python (pandas, классический на базовый функционал), вопросы про A/B тесты (кто-то может спрашивать глубже, кто-то нет). Базово вопросы про ограничение критериев, оценки тестов, снижения дисперсии, дизайн эксперимента.

🤔 Могут дать и логические задачи, которые могут уже стать изъезженными и решаются в зависимости от имеющихся знаний и предположений на уровне наблюдений: Сколько курьеров в Москве? Сколько сотрудников колл-центра работают в компании и т.д.

В зависимости от грейда различные ожидания: где-то технически сильный сотрудник, где-то тот, у кого был опыт конкретной поляны, человек полностью отвечал за развитие блока бизнеса и это принесло результат.

🔗 Про дизайн эксперимента
🔗 CUPED, постстратификация, VWE, про классическое снижение дисперсии
🔗 Продуктовые кейсы
🔗 Сборник материалов с продуктовыми кейсами

😱 Финальная секция

Абсолютно рандомная секция, в различных командах разные вопросы. Кто-то может попросить написать код, а кто-то может за жизнь поспрашивать, кто-то может спросить за техническую составляющую.

🙊 По своим собесам скажу, что у меня были бизнес-кейсы + технические финалы. Тут зачастую сидит CPO / Product Lead + Analytics Lead / Analytics Head. Можно зачастую поговорить на абстрактные темы: какие ожидания (но конечно это лучше выяснять в начале), сколько человек в команде, какие проекты, какие вызовы. Это все очень интересно, так как по факту придется с этим работать. Можно уточнить какие есть минусы, что можно улучшить. Здесь диалог)

⚠️ Перед каждым собесом я практиковался следующим образом: просил GPT сформировать задания, которые подходят под то, какая команда собеседует. Обычно это я выясняю у HR, так как хочется понять, к чему готовиться. У кого-то есть уже припасенный лендинг под это, у кого-то нет)

P.S: Вся информация сформирована из моих личных собеседований и может отличаться от того, что у вас было.

А вы собесились недавно? Ставьте 🐳, если пост зашел! Пишите в комментариях, что спрашивали!
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳99🔥241622



tgoop.com/zasql_python/415
Create:
Last Update:

Раз вы такие набрали столько много реакций, выкладываю пост про продуктового аналитика / аналитика данных в 2025.

Пост вышел объемный, поэтому дополнительно выпущу пост про основные ошибки в резюме у кандидатов.

📸 Скрининг

< Здесь будет отдельный пост, который поможет его пройти >

📞 Созвон с HR

В некоторых компаниях могут спрашивать зарплатные ожидания на этом этапе + то, чем занимались вы для подбора команды. Зачастую те компании, в которые я собесился, предлагали общий трек, а затем выбор из пула команд на финалах. Этот этап не всегда обязательный, но тут могут спросить что-то из разряда:

1. Кинули монету 10 раз, какая вероятность, что 5 раз выпал орел
2. Условная вероятность, формула Байеса
3. Про доверительные интервалы, формулу MDE, критерии и так далее
4. Что такое параметрические / непараметрические тесты?
5. Что такое p-value?
6. Какие есть ограничения у хи-квадрата, t-теста, z-теста?
7. Что проверяет критерий Манна-Уитни?
8. Что такое A/A тест? A/B тест?


Эти вопросы могут всплыть и на технических секциях, поэтому будьте готовы: если их не задали в начале, это не значит, что их не будет дальше

🔗 Пост про MDE
🔗 Пост про p-value
🔗 Формула Байеса и условная вероятность (очень топовый ресурс, раньше на нем сидел очень часто в вузе для подготовки к важным работам).
🔗 Доверительные интервалы (с ресурса выше)
🔗 Сборник задач про вероятности

* Этот этап необязательный, могут сразу назначить следующие секции

🔥 Техническая секция

Тут может быть все, что угодно, но попробую стандартизировать.

🗯 Тренируем задачи с помощью GPT + материалов, которые я скинул.

❤️ В Яндексе была алгосекция (она не во все команды) + бизнес-секция, где будете решать код и раскручивать абстрактный кейс, 90% на A/B тесты. В свое время я плотно сидел на литкоде + тренировкам по алгоритмам от Яндекса, в некоторые компании также спрашивают алгоритмы. Уровень easy / medium на литкоде.

🌏 В Авито две секции определяют твой грейд (задачи на теорию вероятностей + матрица компетенций), был удивлен, что не было кода. Спросили про опыт в ML.

В других компаниях будут гонять по SQL (шпаргалка тут, поможет), Python (pandas, классический на базовый функционал), вопросы про A/B тесты (кто-то может спрашивать глубже, кто-то нет). Базово вопросы про ограничение критериев, оценки тестов, снижения дисперсии, дизайн эксперимента.

🤔 Могут дать и логические задачи, которые могут уже стать изъезженными и решаются в зависимости от имеющихся знаний и предположений на уровне наблюдений: Сколько курьеров в Москве? Сколько сотрудников колл-центра работают в компании и т.д.

В зависимости от грейда различные ожидания: где-то технически сильный сотрудник, где-то тот, у кого был опыт конкретной поляны, человек полностью отвечал за развитие блока бизнеса и это принесло результат.

🔗 Про дизайн эксперимента
🔗 CUPED, постстратификация, VWE, про классическое снижение дисперсии
🔗 Продуктовые кейсы
🔗 Сборник материалов с продуктовыми кейсами

😱 Финальная секция

Абсолютно рандомная секция, в различных командах разные вопросы. Кто-то может попросить написать код, а кто-то может за жизнь поспрашивать, кто-то может спросить за техническую составляющую.

🙊 По своим собесам скажу, что у меня были бизнес-кейсы + технические финалы. Тут зачастую сидит CPO / Product Lead + Analytics Lead / Analytics Head. Можно зачастую поговорить на абстрактные темы: какие ожидания (но конечно это лучше выяснять в начале), сколько человек в команде, какие проекты, какие вызовы. Это все очень интересно, так как по факту придется с этим работать. Можно уточнить какие есть минусы, что можно улучшить. Здесь диалог)

⚠️ Перед каждым собесом я практиковался следующим образом: просил GPT сформировать задания, которые подходят под то, какая команда собеседует. Обычно это я выясняю у HR, так как хочется понять, к чему готовиться. У кого-то есть уже припасенный лендинг под это, у кого-то нет)

P.S: Вся информация сформирована из моих личных собеседований и может отличаться от того, что у вас было.

А вы собесились недавно? Ставьте 🐳, если пост зашел! Пишите в комментариях, что спрашивали!

BY Заскуль питона (Data Science)


Share with your friend now:
tgoop.com/zasql_python/415

View MORE
Open in Telegram


Telegram News

Date: |

bank east asia october 20 kowloon Image: Telegram. best-secure-messaging-apps-shutterstock-1892950018.jpg Telegram Channels requirements & features ‘Ban’ on Telegram
from us


Telegram Заскуль питона (Data Science)
FROM American