tgoop.com/zasql_python/337
Last Update:
LLM-агенты [https://huggingface.co/blog/open-source-llms-as-agents#what-are-agents] [ч.1]
LLM-агенты — это все системы, которые используют LLM в качестве своего механизма и могут выполнять действия в окружающей среде на основе наблюдений. Они могут использовать несколько итераций цикла «Восприятие ⇒ Рефлексия ⇒ Действие» для выполнения своей задачи и часто дополняются системами планирования или управления знаниями для повышения своей эффективности.
На картинке изображен ReAct (рассуждать и действовать) предлагается рассмотреть архитектуру с сохранением памяти на основе запроса и промпт складывать из имеющегося контекста. По сути как в ChatGPT, но тут еще дополнительно возникает проверка при решении задачи. То есть по сути до тех пор, пока задача не будет решена, мы будем добавлять дополнительного контекста
1. input
Here is a question: "How many seconds are in 1:23:45?"
You have access to these tools:
- convert_time: converts a time given in hours:minutes:seconds into seconds.
You should first reflect with ‘Thought: {your_thoughts}’, then you either:
- call a tool with the proper JSON formatting,
- or your print your final answer starting with the prefix ‘Final Answer:’
2. LLM размышляет
Thought: I need to convert the time string into seconds.
3. LLM вызывает инструмент
Action:
{
"action": "convert_time",
"action_input": {
"time": "1:23:45"
}
}
4. Инструмент возвращает результат
Thought: I now have the information needed to answer the question.
Final Answer: There are 5025 seconds in 1:23:45.
Решение базовых проблем
> кормить качественным контекстом
> хорошо описывать имеющиеся инструменты (например, таблицы, запросы и др.)
> использовать определенные сценарии
> рабочая память, валидация результатов агентом
> использовать память
Вместо угадываний LLM будет учиться выполнять задачи пошагово и подход в дальнейшем можно масштабировать). В этой статье представлен еще код того, как можно интегрировать библиотеки Hugging Face для создания агентов через LangChain.
Понравился такой формат поста? Ставьте реакции! Продолжу дальше писать про LLM и агентов, сейчас небольшое погружение
BY Заскуль питона (Data Science)

Share with your friend now:
tgoop.com/zasql_python/337