ZASQL_PYTHON Telegram 310
Пользуемся продуктом (или собираем фидбек) для генерации новых гипотез

Если ты сам не пользуешься продуктом, многое ускользает. По факту на основе данных мы отвечаем на вопрос: «Что случилось?»

Ты не замечаешь очевидных неудобств, которые мешают пользователям. Ты видишь, что на этапе оплаты большой отток. Анализируешь данные, проверяешь A/B-тесты, но не находишь явной причины. А если бы ты попробовал оплатить заказ сам, то заметил бы, что в мобильной версии кнопка “Оплатить” уходит за границы экрана.

Данные могут показывать проблему, но не её причину. Например, ты понимаешь, что время нахождения на странице сильно меньше, чем ожидается (мы считаем, что просмотр контента этой страницы улучшает бизнес-показатели). Проблема могла быть с тем, что очень много текста, непонятное содержание страницы, техническая ошибка и т.д. Хорошее правило с ошибками: «Если воспроизводится у двух и более людей, значит проблема глобальная».

Гипотезы строятся в вакууме, а не на основе реального опыта. Можно бесконечно анализировать данные, но хорошие гипотезы могут рождаются, когда ты сталкиваешься с неудобствами. Видишь, что процесс сложный, что логика неочевидная — проверяешь на адекватность, тестируешь.

В продукте для себя я вижу возможность для генерации новых гипотез, которые основаны на пользовательском пути (точечно) или для группы лиц (по результатам исследований).

[Я понимаю, что для разных аналитиков в разных продуктах по-разному. Мы можем по факту и не трогать продукт, а получать фидбек по нему на основе обращений в саппорт или качественных исследований по интересующему направлению]

Ставьте реакции ❤️, если пост понравился, пишите комментарии.

А вы тестируете продукт, который анализируете? Как часто замечаете проблемы, которые не видно в метриках?
Please open Telegram to view this post
VIEW IN TELEGRAM
25🔥4🐳2



tgoop.com/zasql_python/310
Create:
Last Update:

Пользуемся продуктом (или собираем фидбек) для генерации новых гипотез

Если ты сам не пользуешься продуктом, многое ускользает. По факту на основе данных мы отвечаем на вопрос: «Что случилось?»

Ты не замечаешь очевидных неудобств, которые мешают пользователям. Ты видишь, что на этапе оплаты большой отток. Анализируешь данные, проверяешь A/B-тесты, но не находишь явной причины. А если бы ты попробовал оплатить заказ сам, то заметил бы, что в мобильной версии кнопка “Оплатить” уходит за границы экрана.

Данные могут показывать проблему, но не её причину. Например, ты понимаешь, что время нахождения на странице сильно меньше, чем ожидается (мы считаем, что просмотр контента этой страницы улучшает бизнес-показатели). Проблема могла быть с тем, что очень много текста, непонятное содержание страницы, техническая ошибка и т.д. Хорошее правило с ошибками: «Если воспроизводится у двух и более людей, значит проблема глобальная».

Гипотезы строятся в вакууме, а не на основе реального опыта. Можно бесконечно анализировать данные, но хорошие гипотезы могут рождаются, когда ты сталкиваешься с неудобствами. Видишь, что процесс сложный, что логика неочевидная — проверяешь на адекватность, тестируешь.

В продукте для себя я вижу возможность для генерации новых гипотез, которые основаны на пользовательском пути (точечно) или для группы лиц (по результатам исследований).

[Я понимаю, что для разных аналитиков в разных продуктах по-разному. Мы можем по факту и не трогать продукт, а получать фидбек по нему на основе обращений в саппорт или качественных исследований по интересующему направлению]

Ставьте реакции ❤️, если пост понравился, пишите комментарии.

А вы тестируете продукт, который анализируете? Как часто замечаете проблемы, которые не видно в метриках?

BY Заскуль питона (Data Science)


Share with your friend now:
tgoop.com/zasql_python/310

View MORE
Open in Telegram


Telegram News

Date: |

Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. Deputy District Judge Peter Hui sentenced computer technician Ng Man-ho on Thursday, a month after the 27-year-old, who ran a Telegram group called SUCK Channel, was found guilty of seven charges of conspiring to incite others to commit illegal acts during the 2019 extradition bill protests and subsequent months. Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots. A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. Don’t publish new content at nighttime. Since not all users disable notifications for the night, you risk inadvertently disturbing them.
from us


Telegram Заскуль питона (Data Science)
FROM American