ZASQL_PYTHON Telegram 302
Как считать пенетрацию пользователей в продукте на SQL?

🎮 В сервисе у нас есть чарт, характеризующий количество пользователей в сервисе (MAU / DAU / WAU), мы смотрим за определенный промежуток времени количество пользователей. Этот график интуитивно понятен, есть практически во всех продуктах и является одной из тех метрик, которую отслеживают.

Тут достаточно понятно, берем группировку по дням / неделям / месяцам, считаем уникальных пользователей в приложении и готово!

Пенетрация позволяет ответить на вопрос: "Сколько всего пользователей пользуются продуктом в динамике?". В сервисе есть старички, которые регулярно продукт используют и за время мы их учитываем несколько раз (по дням). Мы можем взять весь год и посмотреть сколько всего пользователей использовали фичу X и посчитать статично, найти долю и все. Но хочется понимать как инициативы влияют на абсолютные значения / доли относительно всех пользователей продукта до момента T.


WITH daily_users AS (
SELECT
event_date,
user_id
FROM user_events
WHERE event_date BETWEEN '2024-01-01' AND '2024-01-30'
),
date_series AS (
SELECT DISTINCT event_date
FROM daily_users
),
cumulative_users AS (
SELECT
d.event_date,
COUNT(DISTINCT u.user_id) AS cumulative_unique_users
FROM date_series d
LEFT JOIN daily_users u ON u.event_date <= d.event_date
GROUP BY d.event_date
ORDER BY d.event_date
)
SELECT * FROM cumulative_users;


⬆️ Выше представлен скрипт, который считает накопительно пользователей по дням, теперь мы можем это применить для ответа на вопрос: "Какой процент пользователей когда-либо использовал продукт на момент времени T?". Это нам может быть нужно для отслеживания доли использования от всей аудитории накопительно. Мы можем более явно отслеживать как наша база (в тотале) реагирует по дням, когда мы используем какие-то механики, например, или запускаем новые фичи


WITH daily_feature_users AS (
SELECT
event_date,
user_id
FROM user_events
WHERE event_name = 'feature_x'
AND event_date BETWEEN '2024-01-01' AND '2024-01-30'
),
daily_total_users AS (
SELECT
event_date,
user_id
FROM user_events
WHERE event_date BETWEEN '2024-01-01' AND '2024-01-30'
),
date_series AS (
SELECT DISTINCT event_date
FROM daily_total_users
),
cumulative_feature_users AS (
SELECT
d.event_date,
COUNT(DISTINCT u.user_id) AS cumulative_feature_users
FROM date_series d
LEFT JOIN daily_feature_users u ON u.event_date <= d.event_date
GROUP BY d.event_date
ORDER BY d.event_date
),
cumulative_total_users AS (
SELECT
d.event_date,
COUNT(DISTINCT u.user_id) AS cumulative_total_users
FROM date_series d
LEFT JOIN daily_total_users u ON u.event_date <= d.event_date
GROUP BY d.event_date
ORDER BY d.event_date
)
SELECT
cfu.event_date,
cfu.cumulative_feature_users,
ctu.cumulative_total_users,
ROUND(100.0 * cfu.cumulative_feature_users / (ctu.cumulative_total_users, 0), 2) AS penetration_rate
FROM cumulative_feature_users cfu
JOIN cumulative_total_users ctu ON cfu.event_date = ctu.event_date
ORDER BY cfu.event_date;


⬆️ Выше представлен код, как мы считае долю тех, кто использовал фичу относительно всех пользователей до момента T.

🐖 Используете ли вы пенетрацию для отслеживания доли относительно всех пользователей? Был ли этот пост полезен? Ставьте 100 🐳 и я выложу еще что-нибудь по этой тематике)
Please open Telegram to view this post
VIEW IN TELEGRAM
1🐳50114👍3



tgoop.com/zasql_python/302
Create:
Last Update:

Как считать пенетрацию пользователей в продукте на SQL?

🎮 В сервисе у нас есть чарт, характеризующий количество пользователей в сервисе (MAU / DAU / WAU), мы смотрим за определенный промежуток времени количество пользователей. Этот график интуитивно понятен, есть практически во всех продуктах и является одной из тех метрик, которую отслеживают.

Тут достаточно понятно, берем группировку по дням / неделям / месяцам, считаем уникальных пользователей в приложении и готово!

Пенетрация позволяет ответить на вопрос: "Сколько всего пользователей пользуются продуктом в динамике?". В сервисе есть старички, которые регулярно продукт используют и за время мы их учитываем несколько раз (по дням). Мы можем взять весь год и посмотреть сколько всего пользователей использовали фичу X и посчитать статично, найти долю и все. Но хочется понимать как инициативы влияют на абсолютные значения / доли относительно всех пользователей продукта до момента T.


WITH daily_users AS (
SELECT
event_date,
user_id
FROM user_events
WHERE event_date BETWEEN '2024-01-01' AND '2024-01-30'
),
date_series AS (
SELECT DISTINCT event_date
FROM daily_users
),
cumulative_users AS (
SELECT
d.event_date,
COUNT(DISTINCT u.user_id) AS cumulative_unique_users
FROM date_series d
LEFT JOIN daily_users u ON u.event_date <= d.event_date
GROUP BY d.event_date
ORDER BY d.event_date
)
SELECT * FROM cumulative_users;


⬆️ Выше представлен скрипт, который считает накопительно пользователей по дням, теперь мы можем это применить для ответа на вопрос: "Какой процент пользователей когда-либо использовал продукт на момент времени T?". Это нам может быть нужно для отслеживания доли использования от всей аудитории накопительно. Мы можем более явно отслеживать как наша база (в тотале) реагирует по дням, когда мы используем какие-то механики, например, или запускаем новые фичи


WITH daily_feature_users AS (
SELECT
event_date,
user_id
FROM user_events
WHERE event_name = 'feature_x'
AND event_date BETWEEN '2024-01-01' AND '2024-01-30'
),
daily_total_users AS (
SELECT
event_date,
user_id
FROM user_events
WHERE event_date BETWEEN '2024-01-01' AND '2024-01-30'
),
date_series AS (
SELECT DISTINCT event_date
FROM daily_total_users
),
cumulative_feature_users AS (
SELECT
d.event_date,
COUNT(DISTINCT u.user_id) AS cumulative_feature_users
FROM date_series d
LEFT JOIN daily_feature_users u ON u.event_date <= d.event_date
GROUP BY d.event_date
ORDER BY d.event_date
),
cumulative_total_users AS (
SELECT
d.event_date,
COUNT(DISTINCT u.user_id) AS cumulative_total_users
FROM date_series d
LEFT JOIN daily_total_users u ON u.event_date <= d.event_date
GROUP BY d.event_date
ORDER BY d.event_date
)
SELECT
cfu.event_date,
cfu.cumulative_feature_users,
ctu.cumulative_total_users,
ROUND(100.0 * cfu.cumulative_feature_users / (ctu.cumulative_total_users, 0), 2) AS penetration_rate
FROM cumulative_feature_users cfu
JOIN cumulative_total_users ctu ON cfu.event_date = ctu.event_date
ORDER BY cfu.event_date;


⬆️ Выше представлен код, как мы считае долю тех, кто использовал фичу относительно всех пользователей до момента T.

🐖 Используете ли вы пенетрацию для отслеживания доли относительно всех пользователей? Был ли этот пост полезен? Ставьте 100 🐳 и я выложу еще что-нибудь по этой тематике)

BY Заскуль питона (Data Science)


Share with your friend now:
tgoop.com/zasql_python/302

View MORE
Open in Telegram


Telegram News

Date: |

The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place.
from us


Telegram Заскуль питона (Data Science)
FROM American