tgoop.com/yeahub_go_backend/51
Last Update:
#ЛитКод
Задача: 310. Minimum Height Trees
Дерево — это неориентированный граф, в котором любые две вершины соединены ровно одним путем. Другими словами, любое связное граф без простых циклов является деревом.
Дано дерево из n узлов, помеченных от 0 до n - 1, и массив из n - 1 ребер, где edges[i] = [ai, bi] указывает на наличие неориентированного ребра между узлами ai и bi в дереве. Вы можете выбрать любой узел дерева в качестве корня. Когда вы выбираете узел x в качестве корня, дерево имеет высоту h. Среди всех возможных корневых деревьев те, которые имеют минимальную высоту (то есть min(h)), называются деревьями с минимальной высотой (MHT).
Верните список всех меток корней MHT. Вы можете вернуть ответ в любом порядке.
Высота корневого дерева — это количество ребер на самом длинном нисходящем пути между корнем и листом.
Пример:
Input: n = 4, edges = [[1,0],[1,2],[1,3]]
Output: [1]
Explanation: As shown, the height of the tree is 1 when the root is the node with label 1 which is the only MHT.
Создайте список смежности, представляющий граф.
Начните с удаления всех листьев. Лист — это узел с одной гранью. В каждой итерации удаляйте текущие листья и обновляйте список смежности. Новые листья будут вершинами, которые стали листьями после удаления предыдущих листьев.
Повторяйте процесс до тех пор, пока не останется два или менее узлов. Эти узлы будут корнями деревьев с минимальной высотой (MHT).
package main
func findMinHeightTrees(n int, edges [][]int) []int {
if n == 1 {
return []int{0}
}
adj := make([]map[int]bool, n)
for i := 0; i < n; i++ {
adj[i] = make(map[int]bool)
}
for _, edge := range edges {
adj[edge[0]][edge[1]] = true
adj[edge[1]][edge[0]] = true
}
leaves := []int{}
for i := 0; i < n; i++ {
if len(adj[i]) == 1 {
leaves = append(leaves, i)
}
}
remainingNodes := n
for remainingNodes > 2 {
remainingNodes -= len(leaves)
newLeaves := []int{}
for _, leaf := range leaves {
for neighbor := range adj[leaf] {
delete(adj[neighbor], leaf)
if len(adj[neighbor]) == 1 {
newLeaves = append(newLeaves, neighbor)
}
}
delete(adj, leaf)
}
leaves = newLeaves
}
return leaves
}