tgoop.com/unrealneural/1591
Last Update:
Авито показали технологическую внутрянку компании
На фестивале Data Fest Авито показали, как работают языковые и визуальные модели, обучаются агенты поддержки, функционируют бизнес-метрики внедрения. А еще — чем занимаются стажеры в компании.
Выяснилось, что собственный токенизатор модели требует на русском языке в среднем на 29% меньше токенов. Это делает модель до двух раз быстрее чем Qwen такого же размера. В итоге на фесте A-Vibe заняла первое место среди небольших моделей в бенчмарке MERA. Кстати, стажеры в компании тоже занимаются обучением A-Vibe. Для них нет тестовых проектов — ребята сразу попадают в гущу событий.
Визуальная модель не отстает от языковой: она умеет делать описание изображения, распознавать текст, считать объекты на фото и даже определять названия брендов. Быстрый токенизатор опять же помогает выполнять все эти задачи в ускоренном режиме.
А для автоматизации 80-95% рутинных задач Авито создал ML-платформу. Платформа объединяет хранилище готовых признаков, систему разметки с взаимным контролем качества между людьми и ИИ, а также open-source решение Aqueduct для оптимизации инференса, экономящее до 30% ресурсов. Конечная цель ー no-code интерфейс, позволяющий любому сотруднику запускать модели без написания кода.
@ai_newz
BY AI LAB | Лаборатория ИИ

Share with your friend now:
tgoop.com/unrealneural/1591