THE_ALGORITHMS Telegram 4936
DBSCAN — Кластеризация на основе плотности

Density-Based Spatial Clustering of Applications with Noise — алгоритм кластеризации, объединяющий точки данных в группы на основе их плотности. Если точки находятся близко друг к другу, они считаются частью одного кластера. Если точка сильно удалена от других, она считается выбросом (шумом).

Как работает DBSCAN
DBSCAN не опирается на сложные математические формулы — он использует два основных параметра:
Эпсилон (ε) — это радиус вокруг точки, в пределах которого алгоритм ищет ближайших соседей. Этот радиус называют "окрестностью".
Минимум точек (minPts) — минимальное количество точек в пределах радиуса ε, чтобы считать точку "основной".

Алгоритм выделяет три типа точек:
1) Основные точки — точки, вокруг которых находится не меньше minPts соседей в пределах радиуса ε. Они формируют "ядро" кластера.
2) Пограничные точки — точки, которые сами по себе не образуют кластер (меньше minPts соседей), но лежат в окрестности основной точки. Они как бы "пристегнуты" к кластеру.
3) Точки шума — точки, которые не принадлежат ни к одному кластеру и не попадают в окрестность основных точек. Это выбросы, которые игнорируются при построении кластеров.



tgoop.com/the_algorithms/4936
Create:
Last Update:

DBSCAN — Кластеризация на основе плотности

Density-Based Spatial Clustering of Applications with Noise — алгоритм кластеризации, объединяющий точки данных в группы на основе их плотности. Если точки находятся близко друг к другу, они считаются частью одного кластера. Если точка сильно удалена от других, она считается выбросом (шумом).

Как работает DBSCAN
DBSCAN не опирается на сложные математические формулы — он использует два основных параметра:
Эпсилон (ε) — это радиус вокруг точки, в пределах которого алгоритм ищет ближайших соседей. Этот радиус называют "окрестностью".
Минимум точек (minPts) — минимальное количество точек в пределах радиуса ε, чтобы считать точку "основной".

Алгоритм выделяет три типа точек:
1) Основные точки — точки, вокруг которых находится не меньше minPts соседей в пределах радиуса ε. Они формируют "ядро" кластера.
2) Пограничные точки — точки, которые сами по себе не образуют кластер (меньше minPts соседей), но лежат в окрестности основной точки. Они как бы "пристегнуты" к кластеру.
3) Точки шума — точки, которые не принадлежат ни к одному кластеру и не попадают в окрестность основных точек. Это выбросы, которые игнорируются при построении кластеров.

BY Алгоритмы и структуры данных




Share with your friend now:
tgoop.com/the_algorithms/4936

View MORE
Open in Telegram


Telegram News

Date: |

With the “Bear Market Screaming Therapy Group,” we’ve now transcended language. The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces. Telegram users themselves will be able to flag and report potentially false content. A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP.
from us


Telegram Алгоритмы и структуры данных
FROM American