tgoop.com/sysblok/938
Last Update:
Три гайда для востоковедов: китайский, корейский и японский
Многие задачи, связанные с автоматической обработкой текста, начинаются с токенизации — деления текста на слова (токены). Текст на русском языке, например, можно поделить на слова по пробелам, но что делать с японскими и китайскими текстами, где пробелов нет?
Одно из популярных решений — использование словаря, в котором прописаны леммы и их всевозможные словоформы, а также некоторые морфологические сведения. Такие словари лежат в основе библиотек из этой подборки. Рассказываем о них подробнее!
🇨🇳 Text-mining китайского языка: библиотека Jieba
Jieba — одна из самых популярных на сегодняшний день Python-библиотек для токенизации китайских текстов. Например, именно её использовали разработчики Яндекса, когда внедряли функцию перевода видео с китайского языка в браузере. Как с ней работать, узнаете из нашего гайда.
🇯🇵 Text-mining японского языка: библиотека fugashi
fugashi – библиотека, позволяющая самостоятельно провести токенизацию текстов на японском. Она способна не только определить наиболее вероятные границы слов, но также провести морфологический анализ и выделять именованные сущности. А ещё для неё можно скачать дополнительные словари: современный письменный, современный устный и одиннадцать видов словарей для классического японского. О том, как устроена fugashi и как ей пользоваться, узнаете из гайда.
🇰🇷 Text-mining корейского языка: библиотека koNLPy
Библиотека koNLPy выделяет токены, определяет морфемы и части речи. Для этого она предлагает пользователю пять методов: Kkma, Hannanum, Komoran, Mecab и Twitter. Все они отличаются по своему функционалу и подходят для решения разных задач. Подробнее об их особенностях и о том, как устроена работа в koNLPy узнаете из материала.