STUFFYNLP Telegram 25
Mixture-of-Agents — простой способ улучшения ответов LLM

Сегодня рассмотрим статью, которая описывает метод улучшения результатов LLM на разных бенчмарках без дообучения. Он называется Mixture-of-Agents (MoA).

Суть метода заключается в использовании нескольких LLM для генерации ответов. Авторы статьи создали многослойную структуру с несколькими агентами — собственно, моделями — на каждом слое. На вход подавали один вопрос. Каждый из агентов давал ответ. Затем полученные данные агрегировались и вместе с промптом передавались на следующий слой, где процесс запускался заново.

В итоге получался ответ, который превосходит по качеству все предыдущие. Интересно то, что модели показывают лучшие результаты, когда имеют доступ к выходным данным других LLM — даже если ответы последних не слишком качественные. Этот феномен авторы назвали «коллаборативностью LLM» (Сollaborativeness of LLMs).

Эксперименты показали, что использование разных LLM на разных слоях улучшает результаты. Агрегаторы тоже играют важную роль — если пропоузеры могут быть относительно простыми и легкими, то агрегаторы требуют значительных вычислительных ресурсов.

Бенчмарки подтвердили, что MoA — эффективный метод. Скажем, на AlpacaEval 2.0 и MT-Bench применение такой архитектуры дало прирост производительности до 8% по сравнению с GPT-4 Omni.

Впрочем, MoA есть куда расти. Например, в области уменьшения времени до первого токена. Из-за итеративной агрегации конечному пользователю приходится долго ждать ответа на вопрос. Авторы статьи намерены бороться с этим недостатком.

Рассказывайте в комментариях, что думаете о MoA?

Разбор подготовил Никита Шевченко

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/stuffyNLP/25
Create:
Last Update:

Mixture-of-Agents — простой способ улучшения ответов LLM

Сегодня рассмотрим статью, которая описывает метод улучшения результатов LLM на разных бенчмарках без дообучения. Он называется Mixture-of-Agents (MoA).

Суть метода заключается в использовании нескольких LLM для генерации ответов. Авторы статьи создали многослойную структуру с несколькими агентами — собственно, моделями — на каждом слое. На вход подавали один вопрос. Каждый из агентов давал ответ. Затем полученные данные агрегировались и вместе с промптом передавались на следующий слой, где процесс запускался заново.

В итоге получался ответ, который превосходит по качеству все предыдущие. Интересно то, что модели показывают лучшие результаты, когда имеют доступ к выходным данным других LLM — даже если ответы последних не слишком качественные. Этот феномен авторы назвали «коллаборативностью LLM» (Сollaborativeness of LLMs).

Эксперименты показали, что использование разных LLM на разных слоях улучшает результаты. Агрегаторы тоже играют важную роль — если пропоузеры могут быть относительно простыми и легкими, то агрегаторы требуют значительных вычислительных ресурсов.

Бенчмарки подтвердили, что MoA — эффективный метод. Скажем, на AlpacaEval 2.0 и MT-Bench применение такой архитектуры дало прирост производительности до 8% по сравнению с GPT-4 Omni.

Впрочем, MoA есть куда расти. Например, в области уменьшения времени до первого токена. Из-за итеративной агрегации конечному пользователю приходится долго ждать ответа на вопрос. Авторы статьи намерены бороться с этим недостатком.

Рассказывайте в комментариях, что думаете о MoA?

Разбор подготовил Никита Шевченко

Душный NLP

BY Душный NLP




Share with your friend now:
tgoop.com/stuffyNLP/25

View MORE
Open in Telegram


Telegram News

Date: |

Step-by-step tutorial on desktop: Some Telegram Channels content management tips ZDNET RECOMMENDS Telegram Channels requirements & features Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up.
from us


Telegram Душный NLP
FROM American