tgoop.com/stolbov_study/343
Last Update:
Почему магниты магнитятся, а немагниты – не
Сначала стоит ознакомится с введением и частью 1.
Сегодня поговорим о втором классе веществ – магнитно-упорядоченных. Для начала нужно понять, что такое магнитное упорядочение и откуда оно берется.
Сейчас нам пригодятся воспоминания из школьной химии, когда мы рисовали квадратики со стрелочками – заполняли электронные орбитали. Там мы встретились с принципом Паули, который говорит о том, что в атоме не существует одинаковых электронов (с одинаковой энергией и спином), и на одной орбитали могут сидеть только частицы с разнонаправленными спинами.
Магнитным упорядочением обычно обладают элементы с незаполненными внутренними электронными d- и f-оболочками – переходные и редкоземельные металлы, у которых на этих оболочках находятся электроны с нескомпенсированными спинами (направленными в одну сторону). В таких атомах есть ненулевой спиновый магнитный момент, и они ведут себя как маленькие магниты.
Когда атомы вместе со своими электронными облаками в металле находятся в кристаллической решетке, эти облака могут частично перекрываться и обмениваться друг с другом энергией. Из-за этого обмена, те самые нескомпенсированные спины электронов внутренних оболочек соседних атомов могут ориентироваться как в одну сторону, так и в разные. Это зависит от расстояния между атомами в металле и от размеров электронных облаков. Если расстояние между атомами маленькое - электронные облака сильно перекрываются, и спинам энергетически выгодно ориентироваться в противоположные стороны – возникает антиферромагнетизм. Если расстояние между атомами побольше и электронные оболочки перекрываются не сильно, то спины ориентируются в одном направлении - ферромагнетизм.
Из переходных металлов к ферромагнетикам относится железо, никель, кобальт, а к антиферромагнетикам – марганец, хром. Есть еще ферримагнетики – вещества, похожие на антиферромагнетики, но у которых моменты скомпенсированных спинов имеют разную величину, в результате чего суммарный магнитный момент ненулевой, и они ведут себя схоже с ферромагнетиками. К таким веществам относятся различные оксиды железа.
Стоит отметить, что мы говорим именно о спиновом магнитном моменте – моменте вращения электрона вокруг своей оси. А что там с «витком с током» - орбитальным моментом? В ферромагнетиках и антиферромагнетиках по сравнению с парамагнетиками расстояния между атомами слишком близки, и мешают электронам активно двигаться по орбитам, создавая «контур с током». С другой стороны, в редкоземельных металлах недостроенные f-оболочки находятся глубже внутри атома, и от воздействия соседних атомов их экранируют внешние электроны. Поэтому в них не гасится магнитное поле «витков с током» и их общее магнитное поле намного больше переходных металлов.
Но все электроны в кристалле не могут договориться между собой и выстроить свои спины в ряд. На это не хватает энергии. Поэтому этот «договорняк» действует на определенном расстоянии, и в кристалле образуются отдельные области, внутри которых все спины электронов направлены в одну сторону (для ферромагнетика), а при переходе в другую область направление этих спинов меняется. Такие области называются магнитными доменами и часто в кристалле расположены хаотично. Поэтому ферромагнетик может и не иметь собственного магнитного поля.
Все меняется, когда он попадает во внешнее магнитное поле. Тогда домены начинают поворачиваться в сторону этого поля, а также укрупняться, поглощая друг друга так, что спины всех электронов ориентируются в одном направлении, и кристалл намагничивается до насыщения и превращается в магнит. Даже если внешнее магнитное поле выключить, все домены не вернутся в свое исходное положение, потому что для этого нужна дополнительная энергия. Такая «память» магнитного поля объясняет, почему в его отсутствии магнит магнитит.
BY STOLBOV STUDY | ФИЗИКА для взрослых и детей
Share with your friend now:
tgoop.com/stolbov_study/343