tgoop.com/stolbov_study/271
Last Update:
Для начала разберем принцип работы просвечивающего электронного микроскопа, как самого первого придуманного микроскопа для наблюдения предметов за пределами световой оптики.
Схему работы также приведу на рисунке. Источником электронов является такая же лампочка, как в световом микроскопе. Только
лампочка накаливания испускает свет при нагреве вольфрамовой нити, а в электронном микроскопе та же вольфрамовая нить при нагреве испускает электроны и является катодом. Вылетевшие электроны из катода попадают в длинную колонну с электрическим полем, которое их ускоряет до нужной энергии, и они попадают на
образец. Образец используется настолько тонкий (толщина около 100 нм), что электроны проходят сквозь него и попадают на специальный чувствительный к электронам экранчик, на котором, по сути, появляется увеличенная проекция образца (как в видеопроекторе). По пути движения в колонне пучку электронов
необходимо придать определенную форму (сфокусировать), чтобы он попал в нужную точку объекта, а также, пройдя через объект, сформировал увеличенное изображение. Для этого используются, так называемые, электромагнитные линзы (конденсоры). Это катушки, создающие магнитное поле, которое искажает траекторию электронов (из-за возникновения силы Лоренца), в нужную сторону и формирует узкий пучок. При большом ускоряющем напряжении, а, значит, маленькой длине волны, мы можем увидеть атомные ряды в твердом теле, и это уже не фантастика, а обыденность для ученых.
Стоит отметить, что все это происходит в высоком вакууме, т.к. электроны очень маленькие и, встречаясь с крупными молекулами воздуха, сразу же тормозятся. Чем меньше воздуха будет в колонне, тем больше электронов будут долетать до места назначения, и тем лучше будет получаться картинка.
Продолжение ⬇️⬇️⬇️
BY STOLBOV STUDY | ФИЗИКА для взрослых и детей
Share with your friend now:
tgoop.com/stolbov_study/271
