STATS_FOR_SCIENCE Telegram 144
Как я перепутала средние чеки и ARPPU и заруинила несколько A/B тестов

Я работаю в команде платежей, поэтому основные A/B тесты у нас проводятся на последнем этапе воронки - от нажатия кнопки “Купить” до успешной оплаты. Мы используем конверсию в успешную оплату как ключевую метрику и ARPPU как вспомогательную, это достаточно стандартный подход.

Иногда бывает, что одна из метрик падает, а другая растет. Чтобы понять, что на самом деле происходит с выручкой, мы используем прогнозную финмодель. Мой коллега Рома читал про это очень крутой доклад на Aha-25 (ссылка вот, попозже я может напишу развернутый отзыв на конфу).

Небольшая сноска про термины 🤓:
Средний чек (Average Order Value, AOV) - это просто вся выручка, деленная на количество транзакций, то есть буквально среднеарифметическое.
ARPPU (Average Revenue Per Paying User) - средняя выручка на платящего пользователя.
Пример: пользователь 1 купил на 200р, пользователь 2 купил на 100р, потом еще на 300р. Тогда средний чек будет (200+100+300)/3=200, а ARPPU = (200 + (100+300))/2 = 300, так как платящих пользователей 2 в этом примере.
Есть еще метрика ARPU - Average Revenue Per User, средняя выручка на пользователя (включая тех, кто не заплатил).

ARPPU будет всегда больше чем средний чек, как минимум не меньше.
В контексте A/B тестов эти метрики считаются базовыми и разбираются на любом курсе.

Моя ошибка была в том, что я считала средние чеки (просто mean(revenue)), но почему-то думала что это уже ARPPU, таким образом проанализировала несколько результатов тестов. Ошибку случайно заметил продакт, когда сверял исторические данные и увидел, что мои значения "ARPPU" по порядку величины подозрительно похожи на средние чеки 🤦‍♀️. Пришлось пересчитывать, благо принципиально выводы не поменялись, но несколько тестов были признаны неуспешными, а после пересчета оказалось, что все нормально.

Почему используется именно ARPPU как метрика в A/B тестировании?

В принципе, можно использовать разные денежные метрики в зависимости от поставленной задачи. В нашем случае мы рассматриваем ARPPU в связке с конверсией. Используя финмодель, эта связка помогает принимать решения не “на глазок”, а с прогнозом реальной выручки. Но только если метрики посчитаны правильно — теперь я это точно не забуду 🙃

#analytics #AB_tests
🔥4621👍6🙏2



tgoop.com/stats_for_science/144
Create:
Last Update:

Как я перепутала средние чеки и ARPPU и заруинила несколько A/B тестов

Я работаю в команде платежей, поэтому основные A/B тесты у нас проводятся на последнем этапе воронки - от нажатия кнопки “Купить” до успешной оплаты. Мы используем конверсию в успешную оплату как ключевую метрику и ARPPU как вспомогательную, это достаточно стандартный подход.

Иногда бывает, что одна из метрик падает, а другая растет. Чтобы понять, что на самом деле происходит с выручкой, мы используем прогнозную финмодель. Мой коллега Рома читал про это очень крутой доклад на Aha-25 (ссылка вот, попозже я может напишу развернутый отзыв на конфу).

Небольшая сноска про термины 🤓:
Средний чек (Average Order Value, AOV) - это просто вся выручка, деленная на количество транзакций, то есть буквально среднеарифметическое.
ARPPU (Average Revenue Per Paying User) - средняя выручка на платящего пользователя.
Пример: пользователь 1 купил на 200р, пользователь 2 купил на 100р, потом еще на 300р. Тогда средний чек будет (200+100+300)/3=200, а ARPPU = (200 + (100+300))/2 = 300, так как платящих пользователей 2 в этом примере.
Есть еще метрика ARPU - Average Revenue Per User, средняя выручка на пользователя (включая тех, кто не заплатил).

ARPPU будет всегда больше чем средний чек, как минимум не меньше.
В контексте A/B тестов эти метрики считаются базовыми и разбираются на любом курсе.

Моя ошибка была в том, что я считала средние чеки (просто mean(revenue)), но почему-то думала что это уже ARPPU, таким образом проанализировала несколько результатов тестов. Ошибку случайно заметил продакт, когда сверял исторические данные и увидел, что мои значения "ARPPU" по порядку величины подозрительно похожи на средние чеки 🤦‍♀️. Пришлось пересчитывать, благо принципиально выводы не поменялись, но несколько тестов были признаны неуспешными, а после пересчета оказалось, что все нормально.

Почему используется именно ARPPU как метрика в A/B тестировании?

В принципе, можно использовать разные денежные метрики в зависимости от поставленной задачи. В нашем случае мы рассматриваем ARPPU в связке с конверсией. Используя финмодель, эта связка помогает принимать решения не “на глазок”, а с прогнозом реальной выручки. Но только если метрики посчитаны правильно — теперь я это точно не забуду 🙃

#analytics #AB_tests

BY Статистика и R в науке и аналитике




Share with your friend now:
tgoop.com/stats_for_science/144

View MORE
Open in Telegram


Telegram News

Date: |

When choosing the right name for your Telegram channel, use the language of your target audience. The name must sum up the essence of your channel in 1-3 words. If you’re planning to expand your Telegram audience, it makes sense to incorporate keywords into your name. While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. Hashtags Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings.
from us


Telegram Статистика и R в науке и аналитике
FROM American