Notice: file_put_contents(): Write of 15141 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 23333 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Статистика и R в науке и аналитике@stats_for_science P.135
STATS_FOR_SCIENCE Telegram 135
История A/B тестирования: первые тесты в бигтехе

Продолжаем разбирать историю A/B тестов — начало в этом посте.

Сегодня рассмотрим первопроходцев A/B в современном понимании. Точно сказать, какой именно тест был самым первым, нельзя, но ранние примеры приходятся на начало 2000-х:

📱 Amazon:
Amazon позиционирует себя как data-driven компания, где тестируют самые минимальные изменения интерфейса. Уже в 2004 году Рон Кохави представил доклад об их тестах.
Грег Линден предложил показывать персональные рекомендации на этапе чекаута ("Похожие товары" перед оплатой). Старший вице-президент по маркетингу был категорически против, опасаясь, что это отвлечет пользователей от покупки и снизит продажи.
Однако Линден все равно запустил A/B тест, в котором вариант с рекомендациями победил с таким отрывом, что отказ от этой идеи стоил бы Amazon миллионы долларов.

🔍Google:
Первый A/B тест провели в начале 2000х годов. UX-исследования показывали, что пользователи хотят видеть больше результатов поиска на странице: 20 лучше чем 10, 25 ещё лучше, 30 — идеально. Google провел A/B тест: в экспериментальной группе пользователям показывали 30 результатов поиска на одной странице.
Трафик в экспериментальной группе упал на 25% менее чем за шесть недель. Сотрудники задумались, почему это произошло. Одним из вариантов был парадокс выбора, когда пользователи из-за слишком большого количества вариантов не могут решить, что им выбрать.
Однако разгадка оказалась проста: скорость. Страницы с 30 результатами грузились дольше в среднем на 0.5 секунды, и этого оказалось достаточно, чтобы серьезно ухудшить пользовательский опыт, что повлекло за собой падение трафика и выручки. В результате Google остановился на 10 результатах поиска в выдаче, и это число используется до сих пор.

📱 Bing:
Сотрудник Bing предложил удлинить заголовки рекламы, добавив к ним первую строчку описания: группа A — короткий заголовок (Купить iPhone), группа B — длинный (Купить iPhone 5 с гарантией и доставкой). Идея казалась незначительной и полгода пылилась в бэклоге (очереди задач разработки), пока разработчик не решил её протестировать. Через несколько часов после старта теста сработал "revenue-too-high alert" — новый формат оказался "слишком хорош", подняв выручку на невероятные 12%. Это принесло Bing более $100M годового дохода в США, не ухудшив UX-метрики. Тест многократно повторяли, подтверждая результат (HBR, 2017).

📱 Netflix:
Тестировали обложки фильмов: группа A — стандартные постеры, группа B — персонализированные. Например, для фильма "Умница Уилл Хантинг" любителям романтики показывали кадры с Мэттом Дэймоном и Минни Драйвер, а фанатам комедий — с Робином Уильямсом, известным комиком. A/B тест показал, что персонализированные обложки значительно увеличили вовлечённость и персонализация стала стандартом Netflix (Netflix Tech Blog, 2017).

А вы замечали, что попали в A/B тест? Я недавно заметила, что я не попала в тестовую группу, когда у коллег изменился интерфейс гугл мита, а у меня нет. Однако примерно через неделю это изменение интерфейса доехало и до меня.

#AB_tests #analytics
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥28👍126



tgoop.com/stats_for_science/135
Create:
Last Update:

История A/B тестирования: первые тесты в бигтехе

Продолжаем разбирать историю A/B тестов — начало в этом посте.

Сегодня рассмотрим первопроходцев A/B в современном понимании. Точно сказать, какой именно тест был самым первым, нельзя, но ранние примеры приходятся на начало 2000-х:

📱 Amazon:
Amazon позиционирует себя как data-driven компания, где тестируют самые минимальные изменения интерфейса. Уже в 2004 году Рон Кохави представил доклад об их тестах.
Грег Линден предложил показывать персональные рекомендации на этапе чекаута ("Похожие товары" перед оплатой). Старший вице-президент по маркетингу был категорически против, опасаясь, что это отвлечет пользователей от покупки и снизит продажи.
Однако Линден все равно запустил A/B тест, в котором вариант с рекомендациями победил с таким отрывом, что отказ от этой идеи стоил бы Amazon миллионы долларов.

🔍Google:
Первый A/B тест провели в начале 2000х годов. UX-исследования показывали, что пользователи хотят видеть больше результатов поиска на странице: 20 лучше чем 10, 25 ещё лучше, 30 — идеально. Google провел A/B тест: в экспериментальной группе пользователям показывали 30 результатов поиска на одной странице.
Трафик в экспериментальной группе упал на 25% менее чем за шесть недель. Сотрудники задумались, почему это произошло. Одним из вариантов был парадокс выбора, когда пользователи из-за слишком большого количества вариантов не могут решить, что им выбрать.
Однако разгадка оказалась проста: скорость. Страницы с 30 результатами грузились дольше в среднем на 0.5 секунды, и этого оказалось достаточно, чтобы серьезно ухудшить пользовательский опыт, что повлекло за собой падение трафика и выручки. В результате Google остановился на 10 результатах поиска в выдаче, и это число используется до сих пор.

📱 Bing:
Сотрудник Bing предложил удлинить заголовки рекламы, добавив к ним первую строчку описания: группа A — короткий заголовок (Купить iPhone), группа B — длинный (Купить iPhone 5 с гарантией и доставкой). Идея казалась незначительной и полгода пылилась в бэклоге (очереди задач разработки), пока разработчик не решил её протестировать. Через несколько часов после старта теста сработал "revenue-too-high alert" — новый формат оказался "слишком хорош", подняв выручку на невероятные 12%. Это принесло Bing более $100M годового дохода в США, не ухудшив UX-метрики. Тест многократно повторяли, подтверждая результат (HBR, 2017).

📱 Netflix:
Тестировали обложки фильмов: группа A — стандартные постеры, группа B — персонализированные. Например, для фильма "Умница Уилл Хантинг" любителям романтики показывали кадры с Мэттом Дэймоном и Минни Драйвер, а фанатам комедий — с Робином Уильямсом, известным комиком. A/B тест показал, что персонализированные обложки значительно увеличили вовлечённость и персонализация стала стандартом Netflix (Netflix Tech Blog, 2017).

А вы замечали, что попали в A/B тест? Я недавно заметила, что я не попала в тестовую группу, когда у коллег изменился интерфейс гугл мита, а у меня нет. Однако примерно через неделю это изменение интерфейса доехало и до меня.

#AB_tests #analytics

BY Статистика и R в науке и аналитике


Share with your friend now:
tgoop.com/stats_for_science/135

View MORE
Open in Telegram


Telegram News

Date: |

Image: Telegram. Choose quality over quantity. Remember that one high-quality post is better than five short publications of questionable value. Healing through screaming therapy 5Telegram Channel avatar size/dimensions Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram.
from us


Telegram Статистика и R в науке и аналитике
FROM American