STARTUP_CUSTDEV Telegram 35
RAG: ошибки

Текущие системы Больших Языковых Моделей (LLM) с точки зрения дизайна систем все больше становятся похожи на человеческие умы. Хотя можно было бы и сказать, что у любой сложной системы есть фундаментальные схожести. Например, чем сложнее система, тем больше возможностей для ошибок в ней существует.

Представим, что вам задали вопрос: в каком году родился Юрий Гагарин? Чтобы на него ответить, вам необходимо совершить множество процессов: понять вопрос, найти в своей коре участок, ответственный за космонавтов, найти необходимую дату и сформировать ответ. Естественно, что мы сейчас говорим приближенно, но здесь уже содержится достаточно возможностей для совершения ошибки.

Предположим, что ответ вы не помните или не знаете - вы пойдете смотреть в учебники, интернет, газеты или другие источники. Теперь вам необходимо сначала найти релевантные документы, затем информацию в этом документе, а после распознать и осознать её, чтобы составить ответ на её основе. Поле для ошибок стало ещё шире!

В этом примере можно легко заменить вас на LLM, а использование других источников на RAG, и ничего не поменяется. Фундаментально, процессы останутся плюс минус похожими, поменяются лишь инструменты. Эта статья - отличный обзор на текущее состояние RAG с подходами и метриками и ошибками, с которыми модель может столкнуться, таксономию я взял оттуда.
2



tgoop.com/startup_custdev/35
Create:
Last Update:

RAG: ошибки

Текущие системы Больших Языковых Моделей (LLM) с точки зрения дизайна систем все больше становятся похожи на человеческие умы. Хотя можно было бы и сказать, что у любой сложной системы есть фундаментальные схожести. Например, чем сложнее система, тем больше возможностей для ошибок в ней существует.

Представим, что вам задали вопрос: в каком году родился Юрий Гагарин? Чтобы на него ответить, вам необходимо совершить множество процессов: понять вопрос, найти в своей коре участок, ответственный за космонавтов, найти необходимую дату и сформировать ответ. Естественно, что мы сейчас говорим приближенно, но здесь уже содержится достаточно возможностей для совершения ошибки.

Предположим, что ответ вы не помните или не знаете - вы пойдете смотреть в учебники, интернет, газеты или другие источники. Теперь вам необходимо сначала найти релевантные документы, затем информацию в этом документе, а после распознать и осознать её, чтобы составить ответ на её основе. Поле для ошибок стало ещё шире!

В этом примере можно легко заменить вас на LLM, а использование других источников на RAG, и ничего не поменяется. Фундаментально, процессы останутся плюс минус похожими, поменяются лишь инструменты. Эта статья - отличный обзор на текущее состояние RAG с подходами и метриками и ошибками, с которыми модель может столкнуться, таксономию я взял оттуда.

BY Идеальный стартап


Share with your friend now:
tgoop.com/startup_custdev/35

View MORE
Open in Telegram


Telegram News

Date: |

“Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. Administrators A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up.
from us


Telegram Идеальный стартап
FROM American