STARTUP_CUSTDEV Telegram 173
Что для ИИ ценнее, чем сам ИИ? Данные

Если подумать, ИИ — это просто алгоритм оптимизации: он пытается решить поставленную задачу, оптимизируя функцию потерь. Для LLM это предсказание следующего токена, для роботов на основе обучения с подкреплением – успешно засунуть куб в квадратное отверстие. При этом, ИИ требует больше одной демонстрации с коробкой чтобы успешно справиться с задачей.

Сегодня мы упираемся в потолок данных. OpenAI, Claude, Grok — все эти компании уже спарсили весь интернет, открытые и закрытые наборы данных. Это заметно по недавнему релизу GPT-5: да, кое-где добавили технические фишечки и выжали ещё +5–10% точности. Но это не тот большой скачок, который был между 3 и 4, и проблема становится ещё очевиднее. Какое решение? Синтетические данные!

И это нужно не только для робототехники или дронов. Смоделированные пользователи, инструменты, рынки позволяют создавать, а не просто собирать ситуации и данные. К примеру, AlphaGO была натренирована с помощью симуляции игры двух нейросетей и они оптимизировались на потенциально всех возможных партиях в игре, что позволило в итоге превзойти человека.

Недавние достижения в области игровых движков, создаваемых ИИ (например, Matrix Game), потенциально могут применяться не только в играх, но и является прочной базой для ИИ симуляций для роботехники. Ну и напоследок, вот что мы должны ждать от подобных движков:

Fidelity (правдоподобие): насколько синтетика статистически и поведенчески похожа на реальность

Coverage (покрытие хвостов): редкие/опасные/дорогие кейсы

Controllability (управляемость): можно целенаправленно варьировать сложность/объекты/условия

Diversity (разнообразие): достаточно ли в каждом сегменте данных
This media is not supported in your browser
VIEW IN TELEGRAM



tgoop.com/startup_custdev/173
Create:
Last Update:

Что для ИИ ценнее, чем сам ИИ? Данные

Если подумать, ИИ — это просто алгоритм оптимизации: он пытается решить поставленную задачу, оптимизируя функцию потерь. Для LLM это предсказание следующего токена, для роботов на основе обучения с подкреплением – успешно засунуть куб в квадратное отверстие. При этом, ИИ требует больше одной демонстрации с коробкой чтобы успешно справиться с задачей.

Сегодня мы упираемся в потолок данных. OpenAI, Claude, Grok — все эти компании уже спарсили весь интернет, открытые и закрытые наборы данных. Это заметно по недавнему релизу GPT-5: да, кое-где добавили технические фишечки и выжали ещё +5–10% точности. Но это не тот большой скачок, который был между 3 и 4, и проблема становится ещё очевиднее. Какое решение? Синтетические данные!

И это нужно не только для робототехники или дронов. Смоделированные пользователи, инструменты, рынки позволяют создавать, а не просто собирать ситуации и данные. К примеру, AlphaGO была натренирована с помощью симуляции игры двух нейросетей и они оптимизировались на потенциально всех возможных партиях в игре, что позволило в итоге превзойти человека.

Недавние достижения в области игровых движков, создаваемых ИИ (например, Matrix Game), потенциально могут применяться не только в играх, но и является прочной базой для ИИ симуляций для роботехники. Ну и напоследок, вот что мы должны ждать от подобных движков:

Fidelity (правдоподобие): насколько синтетика статистически и поведенчески похожа на реальность

Coverage (покрытие хвостов): редкие/опасные/дорогие кейсы

Controllability (управляемость): можно целенаправленно варьировать сложность/объекты/условия

Diversity (разнообразие): достаточно ли в каждом сегменте данных

BY Идеальный стартап


Share with your friend now:
tgoop.com/startup_custdev/173

View MORE
Open in Telegram


Telegram News

Date: |

So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. Today, we will address Telegram channels and how to use them for maximum benefit. The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months.
from us


Telegram Идеальный стартап
FROM American