Notice: file_put_contents(): Write of 1861 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 16384 of 18245 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Data Science. SQL hub@sqlhub P.1974
SQLHUB Telegram 1974
🧠 Как оценивать качество RAG-систем: метрики и MLflow в действии

Retrieval-Augmented Generation (RAG) — мощная архитектура, но её тонко настраивать сложно. Ответы могут казаться "разумными", даже если они на самом деле некорректны. Как понять, работает ли ваша система так, как надо?

В свежем гайде от CodeCut показано, как системно оценивать качество RAG-моделей, а не надеяться на «на глаз»:

🔹 Метрики качества:
- Context Precision / Recall — насколько релевантны и достаточны извлечённые документы
- Faithfulness — насколько ответ действительно основан на контексте, а не «галлюцинирует»
- Answer Relevance — насколько сам ответ полезен и по теме

🔹 Интеграция с MLflow:
Можно логировать не только метрики, но и:
- Извлечённые документы
- Ответы модели
- Ground truth (если есть)
- Скриншоты или HTML-рендеринг всей цепочки

🔹 Автоматическая разметка:
Используется GPT/Claude для автоматического суждения о faithfulness и relevance — удобно при отсутствии human-annotators.


📌 Вывод:
Если вы строите RAG-решения, важно думать не только о качестве retrieval и LLM по отдельности, но и о том, как оценивать весь pipeline.

Метрики + MLflow дают структуру, чтобы сравнивать улучшения и принимать обоснованные решения.


#RAG #MLflow #LLM #Evaluation #AIProduct

@sqlhub
6👍3🔥2



tgoop.com/sqlhub/1974
Create:
Last Update:

🧠 Как оценивать качество RAG-систем: метрики и MLflow в действии

Retrieval-Augmented Generation (RAG) — мощная архитектура, но её тонко настраивать сложно. Ответы могут казаться "разумными", даже если они на самом деле некорректны. Как понять, работает ли ваша система так, как надо?

В свежем гайде от CodeCut показано, как системно оценивать качество RAG-моделей, а не надеяться на «на глаз»:

🔹 Метрики качества:
- Context Precision / Recall — насколько релевантны и достаточны извлечённые документы
- Faithfulness — насколько ответ действительно основан на контексте, а не «галлюцинирует»
- Answer Relevance — насколько сам ответ полезен и по теме

🔹 Интеграция с MLflow:
Можно логировать не только метрики, но и:
- Извлечённые документы
- Ответы модели
- Ground truth (если есть)
- Скриншоты или HTML-рендеринг всей цепочки

🔹 Автоматическая разметка:
Используется GPT/Claude для автоматического суждения о faithfulness и relevance — удобно при отсутствии human-annotators.


📌 Вывод:
Если вы строите RAG-решения, важно думать не только о качестве retrieval и LLM по отдельности, но и о том, как оценивать весь pipeline.

Метрики + MLflow дают структуру, чтобы сравнивать улучшения и принимать обоснованные решения.


#RAG #MLflow #LLM #Evaluation #AIProduct

@sqlhub

BY Data Science. SQL hub




Share with your friend now:
tgoop.com/sqlhub/1974

View MORE
Open in Telegram


Telegram News

Date: |

The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added. Hui said the messages, which included urging the disruption of airport operations, were attempts to incite followers to make use of poisonous, corrosive or flammable substances to vandalize police vehicles, and also called on others to make weapons to harm police. Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” How to create a business channel on Telegram? (Tutorial)
from us


Telegram Data Science. SQL hub
FROM American