SELFMADELIBRARY Telegram 852
ИИ-ансамбли для автоматической генерации аннотированных библиографий: новый уровень точности и эффективности

Генерация аннотированных библиографий – трудоемкий и требующий значительных экспертных знаний процесс. В новой работе Серхио Бермехо предлагается инновационный подход к автоматизации этой задачи с использованием ансамблей больших языковых моделей (LLM). Вместо использования одной LLM, Бермехо предлагает трехуровневую архитектуру, в которой несколько LLM работают совместно, играя разные роли: генерация текста, оценка и суммирование.

Как это работает?

Генерация: Несколько LLM с различными гиперпараметрами (температура, top-k, top-p) генерируют разнообразные варианты аннотаций для одной и той же статьи. Это создаёт разнообразие вывода, что крайне важно для повышения качества итогового результата.

Оценка: Другая LLM выступает в роли "судьи", оценивая сгенерированные аннотации по таким критериям, как релевантность, точность и связность. Этот подход объективнее, чем использование традиционных метрик качества текста.

Суммирование: Наконец, третья LLM объединяет и уточняет лучшие аннотации, выбранные "судьей", используя методы суммирования и удаления избыточной информации.

Результаты впечатляют:

Эксперименты показали значительное улучшение качества аннотаций, сгенерированных ансамблем LLM, по сравнению с результатами отдельных моделей. В частности, метод "Top M Responses" показал улучшение читаемости на 38% и сокращение избыточности контента на 51%. Это демонстрирует эффективность использования ансамблей LLM для автоматизации сложных задач, требующих как генерации текста, так и критической оценки информации.

#ИИ_для_кабинетных_исследований
👍10



tgoop.com/selfmadeLibrary/852
Create:
Last Update:

ИИ-ансамбли для автоматической генерации аннотированных библиографий: новый уровень точности и эффективности

Генерация аннотированных библиографий – трудоемкий и требующий значительных экспертных знаний процесс. В новой работе Серхио Бермехо предлагается инновационный подход к автоматизации этой задачи с использованием ансамблей больших языковых моделей (LLM). Вместо использования одной LLM, Бермехо предлагает трехуровневую архитектуру, в которой несколько LLM работают совместно, играя разные роли: генерация текста, оценка и суммирование.

Как это работает?

Генерация: Несколько LLM с различными гиперпараметрами (температура, top-k, top-p) генерируют разнообразные варианты аннотаций для одной и той же статьи. Это создаёт разнообразие вывода, что крайне важно для повышения качества итогового результата.

Оценка: Другая LLM выступает в роли "судьи", оценивая сгенерированные аннотации по таким критериям, как релевантность, точность и связность. Этот подход объективнее, чем использование традиционных метрик качества текста.

Суммирование: Наконец, третья LLM объединяет и уточняет лучшие аннотации, выбранные "судьей", используя методы суммирования и удаления избыточной информации.

Результаты впечатляют:

Эксперименты показали значительное улучшение качества аннотаций, сгенерированных ансамблем LLM, по сравнению с результатами отдельных моделей. В частности, метод "Top M Responses" показал улучшение читаемости на 38% и сокращение избыточности контента на 51%. Это демонстрирует эффективность использования ансамблей LLM для автоматизации сложных задач, требующих как генерации текста, так и критической оценки информации.

#ИИ_для_кабинетных_исследований

BY какая-то библиотека




Share with your friend now:
tgoop.com/selfmadeLibrary/852

View MORE
Open in Telegram


Telegram News

Date: |

The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.” Avoid compound hashtags that consist of several words. If you have a hashtag like #marketingnewsinusa, split it into smaller hashtags: “#marketing, #news, #usa. bank east asia october 20 kowloon According to media reports, the privacy watchdog was considering “blacklisting” some online platforms that have repeatedly posted doxxing information, with sources saying most messages were shared on Telegram. Choose quality over quantity. Remember that one high-quality post is better than five short publications of questionable value.
from us


Telegram какая-то библиотека
FROM American