tgoop.com/sec_devops/617
Last Update:
Harnessing LLMs for Automating BOLA Detection
Одна из самых распространённых уязвимостей в веб-приложениях — это broken access control. На сегодняшний день SAST и DAST бесполезны при их поиске, и всем известно, что выявление таких уязвимостей решается исключительно ручным тестированием с помощью плагинов для Burp, таких как Autorize, AuthMatrix, Authz.
Однако, недавно мы наткнулись на статью от Unit42 (Palo Alto Networks) о том, как они автоматизировали поиск уязвимостей типа broken object level authorization (BOLA) с помощью ИИ. В качестве входных данных используется спецификация OpenAPI, после чего механизм ищет потенциально уязвимые API, где происходит обращение к объектам (например, username, email, teamId, invoiceId, visitId). Далее строится дерево зависимостей между этими эндпоинтами и формируются тестовые кейсы, в которых инструмент пробует различные сценарии обращения к объектам на основе имеющихся доступов двух пользователей. Если один из пользователей имеет доступ к объектам другого, то существует высокая вероятность наличия уязвимости BOLA.
Звучит достаточно интересно и логично автоматизировать такого рода тестирования! В результате исследователи обнаружили уязвимости в Grafana (CVE-2024-1313), Harbor (CVE-2024-22278) и Easy!Appointments (целых 15 CVE). Они также отметили, что эксперименты показывают: обратная связь от людей постоянно улучшает точность и надёжность ИИ.
В конце статьи также много полезных ссылок на смежные исследования Unit42.
P.S. Кстати, вот еще один прекрасный пример поиска CVE с помощью LLM - анализ вылетов на предмет полезности при фаззинге браузера.
#ai
BY Security Wine (бывший - DevSecOps Wine)

Share with your friend now:
tgoop.com/sec_devops/617