tgoop.com/robotsilike/14
Last Update:
2. Как и зачем мы можем применить машинное обучение
Для всех направлений, безусловно, существует множество классических, устоявшихся подходов. Однако, накопленный индустрией опыт выделяет следующие проблемы, которые может помогает решить ML:
• Сложность построения и тюнинга математических моделей (актуально в первую очередь для управления и планирования), а также проблема их устойчивости - для решения этой проблемы активно развивается применение методов Reinforcement, Supervised и Self-supervised Learning;
• Область восприятия во многом строится на методах 2D и 3D компьютерного зрения. Для задач детекции объектов, очевидно, у нас есть SOTA-нейронные детекторы. Для решения задач локализации и картирования классические методы сами по себе являются довольно сильными бейзлайнами, и одно из направлений применения ML - это глубокие методы 2D и 3D Feature Extraction и Feature Matching;
• Работа с "неформальными" входными данными и целями. Пример подобных задач - движение робота с соблюдением каких-либо правил (например, социальных норм), или, например, поиск объекта и последующая манипуляция на основе только лишь изображения или текстового описания объекта. В подобных примерах очень тяжело составить математические модели и постановку задачи, и здесь на помощь приходят те же RL, Self-supervised Learning, а также LLM-ки.
Однако, вместе с применением ML возникают и дополнительные сложности:
• Проблема "переноса из симуляции в реальный мир" (Sim2Real gap) - актуально в первую очередь для RL-политик и ряда vision-моделей, обученных в симуляторах;
• Проблема generalization, в общем-то ставшая классикой для ML;
• Проблема безопасности и сертификации - для ряда классических подходов к управлению и планированию были разработаны методы, позволяющие получить некоторые формальные гарантии к безопасности системы, в подходах на основе ML с этим все обстоит намного сложнее.
Эти, а также многие другие области применения и вызовы мы рассмотрим в следующих постах на примере различных публикаций, как свежайших, так и уже ставших "классикой"!
BY Universal Autonomy Initiative
Share with your friend now:
tgoop.com/robotsilike/14