Notice: file_put_contents(): Write of 2766 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 16384 of 19150 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
RDCLR.DEV@rdclr_dev P.100
RDCLR_DEV Telegram 100
Библиотеки для работы с нейронными сетями
Теперь рассмотрим основные библиотеки для построения и обучения нейронных сетей.

1. 🍏 TensorFlow — платформа с открытым исходным кодом, разработанная компанией Google для создания приложений глубокого обучения. Он также поддерживает традиционное машинное обучение.

Изначально TensorFlow разрабатывался для больших числовых вычислений без учета глубокого обучения. Однако, он оказался очень полезным и для разработки глубокого обучения, и поэтому Google открыл его исходный код.

2. 🍎 PyTorch — это библиотека машинного обучения, разработанная командой Facebook AI Reseach. Полностью основана на python и использующая мощность графических процессоров. Это также одна из предпочтительных исследовательских платформ глубокого обучения, созданная для обеспечения максимальной гибкости и скорости.

Она известна тем, что предоставляет две наиболее важные функции, а именно: тензорные вычисления с сильной поддержкой графического процессора и построение глубоких нейронных сетей.

3. 🍐 Keras — это высокоуровневый API глубокого обучения. Keras относительно прост в освоении, так как предоставляет интерфейсы с высоким уровнем абстракции. Именно эту библиотеку рекомендуется начать изучать людям, которые только начинают освоение нейронных сетей.

P.S. В конце хотелось бы порекомендовать сайт, который будет полезен студентам и людям, работающим с нейронными сетями. Он позволяет строить базовые схемы нейронных сетей — alexlenail.me 🧩

#rdclr_backend #NN
👍1🔥1



tgoop.com/rdclr_dev/100
Create:
Last Update:

Библиотеки для работы с нейронными сетями
Теперь рассмотрим основные библиотеки для построения и обучения нейронных сетей.

1. 🍏 TensorFlow — платформа с открытым исходным кодом, разработанная компанией Google для создания приложений глубокого обучения. Он также поддерживает традиционное машинное обучение.

Изначально TensorFlow разрабатывался для больших числовых вычислений без учета глубокого обучения. Однако, он оказался очень полезным и для разработки глубокого обучения, и поэтому Google открыл его исходный код.

2. 🍎 PyTorch — это библиотека машинного обучения, разработанная командой Facebook AI Reseach. Полностью основана на python и использующая мощность графических процессоров. Это также одна из предпочтительных исследовательских платформ глубокого обучения, созданная для обеспечения максимальной гибкости и скорости.

Она известна тем, что предоставляет две наиболее важные функции, а именно: тензорные вычисления с сильной поддержкой графического процессора и построение глубоких нейронных сетей.

3. 🍐 Keras — это высокоуровневый API глубокого обучения. Keras относительно прост в освоении, так как предоставляет интерфейсы с высоким уровнем абстракции. Именно эту библиотеку рекомендуется начать изучать людям, которые только начинают освоение нейронных сетей.

P.S. В конце хотелось бы порекомендовать сайт, который будет полезен студентам и людям, работающим с нейронными сетями. Он позволяет строить базовые схемы нейронных сетей — alexlenail.me 🧩

#rdclr_backend #NN

BY RDCLR.DEV




Share with your friend now:
tgoop.com/rdclr_dev/100

View MORE
Open in Telegram


Telegram News

Date: |

Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. Activate up to 20 bots Read now 2How to set up a Telegram channel? (A step-by-step tutorial) Earlier, crypto enthusiasts had created a self-described “meme app” dubbed “gm” app wherein users would greet each other with “gm” or “good morning” messages. However, in September 2021, the gm app was down after a hacker reportedly gained access to the user data.
from us


Telegram RDCLR.DEV
FROM American