QUANT_PRUNE_DISTILL Telegram 63
Stack More Layers Differently: High-Rank Training Through Low-Rank Updates
[Статья][Код]

Обучение всех параметров больших языков моделей весьма прожорливо по памяти из-за необходимости хранить кроме самой тяжеловесной модели еще и состояния оптимизатора (8 байт на параметр).

LoRA, один из самых ходовых методов PEFT, заключающийся в обучении низкоранговых добавок к весам позволяет сильно сэкономить по памяти, демонстрируя при этом хорошее качество при обучении предобученной модели на downstream задачах. Но низкоранговые представления имеют место при дообучении, в то время как для эффективного предобучения на разнообразных данных желательно использовать все имеющуюся в распоряжении емкость сети - то есть обучение должно быть высокоранговым.

В данной статье авторы предлагают метод последовательного обучения низкоранговых добавок к весам линейных слоев нейронной сети с последующим их слиянием с основными весами. И как утверждается, подобная процедура для достаточно больших сетей (самая большая обученная сеть имеет 350M параметров - сущий пустяк по современным меркам), работает ненамного хуже стандартной полноранговой процедуры обучения.

Метод

Ранг суммы двух и более матриц ограничен сверху суммой рангов матриц. Если низкоранговые матрицы в достаточной мере взаимно независимы, то их сумма может иметь значительно больший ранг чем каждое слагаемое по отдельности. Последовательно обучая низкоранговые добавки возможно в итоге добиться высокорангового изменения весов матрицы, В этом и суть метода.

Однако, чтобы метод заработал, авторам пришлось учесть ряд нюансов и применить пару трюков.

Во-первых, используемый при обучении трансформеров Adam хранит скользящие статистики градиентов, и при переходе к обучению новой низкоранговой добавки, если не предпринимать никаких действий, оптимизация будет проводиться в том же подпространстве, что и у предыдущей LoRA добавки, нивелируя всякий смысл в итеративной процедуре. Для предотвращения такого сценария, авторы зануляют 99% состояний оптимизатора с меньшей абсолютной величиной (почему не все? почему не любую другую долю?) при инициализации новой добавки.

Кроме того, learning rate в момент начала обучения новой добавки зануляется и потом быстро разогревается до примерно того же значения, с которым закончила обучение прошлая добавка (используется cosine annealing learning rate). Без короткой warmup фазы обучение расходится.

Предложенная cтратегия именуется ReLoRA.
👍3



tgoop.com/quant_prune_distill/63
Create:
Last Update:

Stack More Layers Differently: High-Rank Training Through Low-Rank Updates
[Статья][Код]

Обучение всех параметров больших языков моделей весьма прожорливо по памяти из-за необходимости хранить кроме самой тяжеловесной модели еще и состояния оптимизатора (8 байт на параметр).

LoRA, один из самых ходовых методов PEFT, заключающийся в обучении низкоранговых добавок к весам позволяет сильно сэкономить по памяти, демонстрируя при этом хорошее качество при обучении предобученной модели на downstream задачах. Но низкоранговые представления имеют место при дообучении, в то время как для эффективного предобучения на разнообразных данных желательно использовать все имеющуюся в распоряжении емкость сети - то есть обучение должно быть высокоранговым.

В данной статье авторы предлагают метод последовательного обучения низкоранговых добавок к весам линейных слоев нейронной сети с последующим их слиянием с основными весами. И как утверждается, подобная процедура для достаточно больших сетей (самая большая обученная сеть имеет 350M параметров - сущий пустяк по современным меркам), работает ненамного хуже стандартной полноранговой процедуры обучения.

Метод

Ранг суммы двух и более матриц ограничен сверху суммой рангов матриц. Если низкоранговые матрицы в достаточной мере взаимно независимы, то их сумма может иметь значительно больший ранг чем каждое слагаемое по отдельности. Последовательно обучая низкоранговые добавки возможно в итоге добиться высокорангового изменения весов матрицы, В этом и суть метода.

Однако, чтобы метод заработал, авторам пришлось учесть ряд нюансов и применить пару трюков.

Во-первых, используемый при обучении трансформеров Adam хранит скользящие статистики градиентов, и при переходе к обучению новой низкоранговой добавки, если не предпринимать никаких действий, оптимизация будет проводиться в том же подпространстве, что и у предыдущей LoRA добавки, нивелируя всякий смысл в итеративной процедуре. Для предотвращения такого сценария, авторы зануляют 99% состояний оптимизатора с меньшей абсолютной величиной (почему не все? почему не любую другую долю?) при инициализации новой добавки.

Кроме того, learning rate в момент начала обучения новой добавки зануляется и потом быстро разогревается до примерно того же значения, с которым закончила обучение прошлая добавка (используется cosine annealing learning rate). Без короткой warmup фазы обучение расходится.

Предложенная cтратегия именуется ReLoRA.

BY КПД


Share with your friend now:
tgoop.com/quant_prune_distill/63

View MORE
Open in Telegram


Telegram News

Date: |

Activate up to 20 bots The imprisonment came as Telegram said it was "surprised" by claims that privacy commissioner Ada Chung Lai-ling is seeking to block the messaging app due to doxxing content targeting police and politicians. Users are more open to new information on workdays rather than weekends. Earlier, crypto enthusiasts had created a self-described “meme app” dubbed “gm” app wherein users would greet each other with “gm” or “good morning” messages. However, in September 2021, the gm app was down after a hacker reportedly gained access to the user data. Ng Man-ho, a 27-year-old computer technician, was convicted last month of seven counts of incitement charges after he made use of the 100,000-member Chinese-language channel that he runs and manages to post "seditious messages," which had been shut down since August 2020.
from us


Telegram КПД
FROM American