Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/quant_prune_distill/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
КПД@quant_prune_distill P.379
QUANT_PRUNE_DISTILL Telegram 379
Infinity∞: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis
[Статья] [Пока только ридми и картинки]

Только-только мы успели выпустить Switti, как создатели VAR, опубликовали собственную text-2-image модель, позиционирующую себя так же как конкурент моделей уровня SDXL/SD3 Medium.

Метод

Наиболее примечателен токенизатор.

В оригинальной статье по VAR использовался Residual VAE c общей кодовой книгой на все масштабы. Выход энкодера на данном масштабе заменяется на ближайший вектор из кодовой книги. На этом этапе возникает некоторая ошибка аппроксимации, и, по всей видимости, в это кроется причина, по которой VQ-VAE традиционно уступают непрерывным аналогам по качеству реконструкции.

Чем больше кодовая книга - тем потенциально меньше ошибка квантизации, но огромные кодовые книги (скажем, с 2^64 векторами) не влезут в память никакой машины.

Потому авторы предлагают параметризовать кодбуки бинарными векторами (специфичными для каждого масштаба k), и квантизация осуществляется просто взятием знака от непрерывного вектора z_k, соответствующему уровню k в иерархии c домножением на некоторый коэффициент. Рассматривают две опции - LFQ, BSQ, отличающиеся на коэффициент 1 / \sqrt{d} и берут в итоге второй вариант, так для него существует эффективное выражение для вычисления энтропийной регуляризации (используемой для более эффективного использования кодбука).

Благодаря такой бинарной квантизации можно расход памяти, требуемый на кодбук размера 2^d, уменьшается с O(2^d), до O(d), благодаря чему, можно хранить колоссальные кодовые книги.

Кроме того, автокодировщик учат быть устойчивым к ошибкам предсказания токенов и во время обучения случайным образом подменяют некоторую долю токенов. Здесь замечу, что в экспериментах по Switti мы обнаружили, что можно менять довольно значительную долю токенов без изменения выхода модели, и модель оказывается устойчивой к этому без манипуляций.

Дабы поддерживать разные aspect ratio и размеры используют факторизованные 2d RoPE позиционные эмбеды.

В качестве текстового энкодера используют Flan-T5. Обусловливание на текст осуществляется как через self-attention, за счет добавления токенов промпта в prefix, так и cross attention между картиночными и текстовыми токенами.



tgoop.com/quant_prune_distill/379
Create:
Last Update:

Infinity∞: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis
[Статья] [Пока только ридми и картинки]

Только-только мы успели выпустить Switti, как создатели VAR, опубликовали собственную text-2-image модель, позиционирующую себя так же как конкурент моделей уровня SDXL/SD3 Medium.

Метод

Наиболее примечателен токенизатор.

В оригинальной статье по VAR использовался Residual VAE c общей кодовой книгой на все масштабы. Выход энкодера на данном масштабе заменяется на ближайший вектор из кодовой книги. На этом этапе возникает некоторая ошибка аппроксимации, и, по всей видимости, в это кроется причина, по которой VQ-VAE традиционно уступают непрерывным аналогам по качеству реконструкции.

Чем больше кодовая книга - тем потенциально меньше ошибка квантизации, но огромные кодовые книги (скажем, с 2^64 векторами) не влезут в память никакой машины.

Потому авторы предлагают параметризовать кодбуки бинарными векторами (специфичными для каждого масштаба k), и квантизация осуществляется просто взятием знака от непрерывного вектора z_k, соответствующему уровню k в иерархии c домножением на некоторый коэффициент. Рассматривают две опции - LFQ, BSQ, отличающиеся на коэффициент 1 / \sqrt{d} и берут в итоге второй вариант, так для него существует эффективное выражение для вычисления энтропийной регуляризации (используемой для более эффективного использования кодбука).

Благодаря такой бинарной квантизации можно расход памяти, требуемый на кодбук размера 2^d, уменьшается с O(2^d), до O(d), благодаря чему, можно хранить колоссальные кодовые книги.

Кроме того, автокодировщик учат быть устойчивым к ошибкам предсказания токенов и во время обучения случайным образом подменяют некоторую долю токенов. Здесь замечу, что в экспериментах по Switti мы обнаружили, что можно менять довольно значительную долю токенов без изменения выхода модели, и модель оказывается устойчивой к этому без манипуляций.

Дабы поддерживать разные aspect ratio и размеры используют факторизованные 2d RoPE позиционные эмбеды.

В качестве текстового энкодера используют Flan-T5. Обусловливание на текст осуществляется как через self-attention, за счет добавления токенов промпта в prefix, так и cross attention между картиночными и текстовыми токенами.

BY КПД


Share with your friend now:
tgoop.com/quant_prune_distill/379

View MORE
Open in Telegram


Telegram News

Date: |

6How to manage your Telegram channel? Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.! During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content. Informative Hashtags are a fast way to find the correct information on social media. To put your content out there, be sure to add hashtags to each post. We have two intelligent tips to give you:
from us


Telegram КПД
FROM American