QUANT_PRUNE_DISTILL Telegram 354
Liger Kernel: Efficient Triton Kernels for LLM Training
[Техрепорт]
[Репозиторий]

Ребята из LinkedIn написали кернелы для разных операций в LLMках на Тритоне (когда нибудь я научусь писать на нем, а не про него), которые ускоряют процедуру обучения и снижают расход памяти по сравнению с ванильной торчовой реализации.

Метод

В частности, Liger Kernel предлагает следующее:

⭐️ Зафьюженные RMSNorm и LayerNorm на прямом и обратном проходе
⭐️ Зафьюженные SwiGLU и GeGLU на прямом и обратном проходе
⭐️ Оптимизированный RoPE
⭐️ И самое интересное - оптимизация вычисления кросс-энтропии

По поводу последнего:

Словари нынче у моделек перевалили за 100к, и на сколь-либо длинных последовательностях матрица логитов будет весить десятки гигов. Потому авторы реализовали прямой проход, вычисление кросс-энтропии и обратный проход в одном kernel-е без необходимости материализации одновременно матрицы логитов и градиентов по логитам. Кроме того, считать логиты можно не разом для всей последовательности, а чанками.

Бенчмарки

Замеряют на A100.

Предложенные нормализации дают хорошее ускорение по сравнению с торчом (не хватает сравнения с Apex). RoPE прямо знатно ускорился. SwiGLU и GeGLU по скорости такие же, как в торче, но снижают расход памяти в 1.6 раз.

В end-2-end сценарии гоняют finetune на 4A100 на Alpaca на Llama-3-8B, Qwen-2-7b, Gemma-1-7b. Скорость обучения возрастает от 10 до 40 %, и пиковый расход памяти уменьшается в среднем на 50%.

Метод также валидируют в связке с Medusa, методом где LLM учится предсказывать несколько следующих токенов за раз, и на каждый n+1 токен своя обучаемая голова. Liger Kernel снижает заметно расход памяти как с замороженной, так и обучаемой тушкой трансформера, благодаря трюкам с вычислениями логитов.

Использование

Liger Kernel можно вызвать по щелчку пальца через AutoLigerKernelForCausalLM или патчинг модели из 🤗. А можно импортировать модули и из них собрать модельку.

Liger Kernel уже интегрирован в transformers, TRL и axolotl.
👍10



tgoop.com/quant_prune_distill/354
Create:
Last Update:

Liger Kernel: Efficient Triton Kernels for LLM Training
[Техрепорт]
[Репозиторий]

Ребята из LinkedIn написали кернелы для разных операций в LLMках на Тритоне (когда нибудь я научусь писать на нем, а не про него), которые ускоряют процедуру обучения и снижают расход памяти по сравнению с ванильной торчовой реализации.

Метод

В частности, Liger Kernel предлагает следующее:

⭐️ Зафьюженные RMSNorm и LayerNorm на прямом и обратном проходе
⭐️ Зафьюженные SwiGLU и GeGLU на прямом и обратном проходе
⭐️ Оптимизированный RoPE
⭐️ И самое интересное - оптимизация вычисления кросс-энтропии

По поводу последнего:

Словари нынче у моделек перевалили за 100к, и на сколь-либо длинных последовательностях матрица логитов будет весить десятки гигов. Потому авторы реализовали прямой проход, вычисление кросс-энтропии и обратный проход в одном kernel-е без необходимости материализации одновременно матрицы логитов и градиентов по логитам. Кроме того, считать логиты можно не разом для всей последовательности, а чанками.

Бенчмарки

Замеряют на A100.

Предложенные нормализации дают хорошее ускорение по сравнению с торчом (не хватает сравнения с Apex). RoPE прямо знатно ускорился. SwiGLU и GeGLU по скорости такие же, как в торче, но снижают расход памяти в 1.6 раз.

В end-2-end сценарии гоняют finetune на 4A100 на Alpaca на Llama-3-8B, Qwen-2-7b, Gemma-1-7b. Скорость обучения возрастает от 10 до 40 %, и пиковый расход памяти уменьшается в среднем на 50%.

Метод также валидируют в связке с Medusa, методом где LLM учится предсказывать несколько следующих токенов за раз, и на каждый n+1 токен своя обучаемая голова. Liger Kernel снижает заметно расход памяти как с замороженной, так и обучаемой тушкой трансформера, благодаря трюкам с вычислениями логитов.

Использование

Liger Kernel можно вызвать по щелчку пальца через AutoLigerKernelForCausalLM или патчинг модели из 🤗. А можно импортировать модули и из них собрать модельку.

Liger Kernel уже интегрирован в transformers, TRL и axolotl.

BY КПД


Share with your friend now:
tgoop.com/quant_prune_distill/354

View MORE
Open in Telegram


Telegram News

Date: |

The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. “Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. How to create a business channel on Telegram? (Tutorial) Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members. Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram.
from us


Telegram КПД
FROM American