tgoop.com/quant_prune_distill/256
Last Update:
KAN: Kolmogorov-Arnold Networks
[Статья][Код]
Введение
В основе всех (ну почти всех) современных архитектур лежит многослойный перцептрон (MLP) с обучаемыми матрицами, сдвигами и фиксированными активациями и некоторым механизмом агрегации для пространственных входов (свертки, attention, state-spaces, мамба,
Теория гласит, что при некоторых предположениях на целевую функцию и функции активации в сети достаточно большой сетью можно приблизить эту самую целевую функцию.
Возникает вопрос 🤔- оптимален ли такой подход по вычислениям / точности и нельзя ли изобрести нечто лучшее?
Метод
В данной статье авторы переосмысляют и в некотором смысле обобщают парадигму построения многослойной сети. В основе идеи лежит знаменитая теорема Колмогорова-Арнольда, что непрерывную многомерную функцию на ограниченной области можно всегда представить в виде композиции функций от одной переменной.
Однако, при этом теорема не дает явного вида этих функций, которые могут оказаться сколько угодно плохими, потому не реализуема на практике.
В данной статье предлагают выучивать сами функции активации, параметризуя их некоторым образом. Каждое ребро между входным и выходным нейроном задается некоторой параметрической функцией довольно общего вида.
Традиционный MLP является одним из частных случаев предлагаемой парадигмы.
В оригинальной теореме перцептрон всего с одним скрытым слоем, но ничто не мешает технически настакать их побольше.
На практике KAN-слой реализуется как B-сплайн с residual connections, домноженный на константу:\phi(x) = w(b(x) + spline(x)), где b(x) = silu(x) = x / (1 + e^{-x})
Оптимизация такого сплайна довольно нетрививальна, и для улучшения сходимости сплайн инициализирует так, чтобы быть близким к нулю в начальный момент времени, и сетка с узлами сплайна обновляется на лету.
При той же глубине и ширине в KAN-сети больше параметров, чем в классической MLP в G (G - размер сетки) раз, но мотивация работы в том, что KAN требуется меньшая ширина для достижения сопоставимого качества.
Далее авторы обосновывают, что KAN обладает значительно лучшей масштабируемостью в сравнении c MLP и обходит проклятие размерности за счет того, что представляет многомерную функцию в виде композиции одномерных, тем самым переводя задачу эффективно в низкоразмерное пространство и выводят степенной закон убывания функции потерь.
Для KAN в однослойной сети, аппроксимирующие функции могут быть очень плохими, но с ростом глубины, существуют все более гладкие комбинации, способные решать целевую задачу.
По ходу дела, для повышения выразительности сети можно добавлять дополнительные узлы в сплайн.
BY КПД
Share with your friend now:
tgoop.com/quant_prune_distill/256