tgoop.com/quant_prune_distill/122
Last Update:
Прореживание предобученных моделей
На практике чаще берут обученную модель и сжимают ее. Авторы берут три модели ViT S/16, M/16, B/16 (S, M, B - Small, Medium, Base, а 16 - размер патча) и прореживают их тем же самым способом, что sparse модели в экспериментах выше (только прореживая сразу, а не через 25% времени обучения), используя 5.6% бюджета на обучение плотной модели.
Для 50%, 75% сжатия такой способ в 5 (4) раз эффективнее чем обучение sparse модели from scratch, но при большем сжатии выигрыш уменьшается. По всей видимости, причина этого в том, что модель сильно просаживается, по сравнению с исходной плотной. Если учитывать бюджет обучения плотной модели в суммарных затратах на создание sparse модели заданного качества, то генерация sparse модели с нуля значительно эффективнее.
Вывод
Весьма интересное и нужное исследование, мотивирующее дальнейшую разработку железа и алгоритмов, способных работать с прореженными матрицами. При фиксированной производительности и памяти железа, по всей видимости, оптимальнее всего будет брать большую насколько возможно модель с некоторой долей нулевых весов и квантованную в низкую точность. Дальнейшее повышение эффективности могут дать conditional sparsity архитектуры, использующие часть параметров на прямом и обратном проходе (как пресловутые смеси экспертов) и retrieval-augmented модели.
BY КПД
Share with your friend now:
tgoop.com/quant_prune_distill/122