tgoop.com/pythonlearnme/240
Last Update:
به بهانه معرفی فریمورک <جایخالی> با ۳ برابر سرعت در پاسخگویی نسبت به FastAPI
و البته باهدف battery included
بودن مثل django
وقتی صحبت از بکند توی پایتون میشه تا همین چندسال قبل تنها گزینه خوب فقط و فقط django
بود و مرسی دولوپرهاش؛ تو زمانی که همه غر میزدند پایتون کند هست و نباید و ... (تو ایرانم ازین حرفا زیاد بود) قشنگ یادمه ی بنده خدایی اسم نمیبرم ولی معروفم هست توی یکی از دانشگاها پنل سخنرانی داشت.
گفت که پایتون فقط یک جو هست و خیلی زود هم تموم میشه؛ بعد هم ادعا کرد به همین دلیل مطالبش رو نیاورده و ترجیح میده راجب مطالب مهمتر صحبت کنه (سخنرانی به شوخی گذشت و تنها کسی که اعتراض کرد توی سالن ۳۰۰-۴۰۰ نفری من بودم) الان شنیدم همون بنده خدا داره از پایتون نون میخوره و دوره هم میذاره.
بگذریم اومد جلوتر و async
معرفی شد؛ هوش مصنوعی از فقط ریسرچ بودن داشت خارج میشد و تجریه دپلوی مهم شد.
دپلوی رو django
انقدر سخت و غیر بهینه بود که عملا خیلی از تیمهایی که پروژههاشون مشتری کافی رو داشت مجبور به توسعه بکند توی زبانهای برنامه نویسی دیگه بودند؛ خیلی از بچه ها رفتند سراغ C, C++
, Go-lang
و ...
حتی جوگیری زیاد شد مدل هارو سمت وب و موبایل و ... هم بردند که صحبتی نیست.
یادی کنم از شب زنده داریها و دپلوی کدها و مدلها با Majid A.M
(آیدی نمیزارم ولی احتمالا هرکی django
کار میکنه میشناسه) عزیز و حجم اپتیمایزهای بالا جزو اولین نفرات و تیمهایی بودیم که کل مدل هوش مصنوعی و اپتیمایز و وب و ... همه روی پایتون بود و البته دسترسی و درخواست رایگان (این برای زمانی بود که همه میرفتن سراغ C, ...
برای دپلوی و کسی باورش نمیشد بشه مدلهای سنگین رو روی سرور بیاری و اون تعداد ریکوست رو با پایتون جواب بده) اون زمان همه فکر میکردند روی سرورهای خفن و ...هستیم ولی این موضوع رو اولین بار هست دارم اعلام میکنم؛
۲ نسخه اول مدلهای پردازش تصویرمون روی کلاستر رزپبری پای و نسخه آخر روی لپتاپ شخصی بنده بود.
ازین دوران گذشتیم flask
با ایدههای جدید اومد و خوبیش این بود که دیگه به اندازه django
سنگین نبود (برای تستهای کوچیک خیلی جواب بود ولی بازم همون مشکلات رو داشت)
البته اضافه کنم سرویسهایی مثل Celery, ...
خیلی از مشکلات رو توی django
حل میکردند
بعد از این زمان FastAPI
معرفی شد؛ روی همون کامیتهای اولیه که عمومی شد چون از بچهها و همکارای بکندم توی شرکتهای سیلیکونولی و ... بسیار راجبش شنیدم به خیلی از دوستان بکند دولوپرم پیشنهاد کردم که وقتش هست یاد بگیرند و بهش کد donate
کنند (کاش خودم اینکارو میکردم) خیلی هم مسخره میکردند. همون Majid A.M
جزوشون بود.
به لطف همهی دولوپرهای پروژههای قبلی django - flask - fastapi
حالا خیلیها باور دارند پایتون میتونه توی پروداکشن و برای پروژههای بزرگ استفاده بشه؛ خیلیها قبول دارند که میشه با پایتون کد زد و از پکیجهایی استفاده کرد که سرعت پردازش بسیار بیشتر بشه .
دولوپرهای پروژههای قبلی نشون دادند که توسعه پکیجهایی با ایدههایی حتی کمی بهتر بسیار ارزش داره و جامعه پایتون همیشه قدردان این زحمات خواهد بود.
تا اینجا که حالا community
زبانی مثل Rust
برای توسعه یک web framework
با سرعت بیشتر و البته به راحتی موارد قبلی برای Python
وارد شده و پروژه Robyn رو به حد خوبی رسونده بطوری که امروز توی چندین جلسه مختلف با دوستان و همکاران بسیار درمورد این پروژه شنیدم.
توی مطالبی که داشتم میخوندم و بنچمارکهایی که از باقی شنیدم اکثرا اشاره میکنند که به راحتی سرعتی ۳
برابر fastapi
رو ارائه میده.
از نظر کدهم شخصا یک نگاهی انداختم به همون سادگی هست؛ خلاصه که شمارو نمیدونم اما شخصا فکر کردم باید قدردان زحمات تیمهای توسعه django, flask, fastapi
و برو بچه هایی که توی دوران سخنرانی ضد سرعت و ... پایتون با این زبان برنامه نویسی ادامه دادند باشم.
BY 🧑💻PythonDev🧑💻

Share with your friend now:
tgoop.com/pythonlearnme/240