PYTHONL Telegram 5150
Наглядное сравнение скорости нового Python 3.14 с предыдущей версией

Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.

Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.

Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.

Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.

Раньше поэтому многопоточность в Python фактически не работала.

🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.

Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.

🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.

📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.

💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.

Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading

@pythonl
👍2712🔥7



tgoop.com/pythonl/5150
Create:
Last Update:

Наглядное сравнение скорости нового Python 3.14 с предыдущей версией

Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.

Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.

Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.

Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.

Раньше поэтому многопоточность в Python фактически не работала.

🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.

Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.

🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.

📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.

💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.

Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading

@pythonl

BY Python/ django









Share with your friend now:
tgoop.com/pythonl/5150

View MORE
Open in Telegram


Telegram News

Date: |

‘Ban’ on Telegram Unlimited number of subscribers per channel There have been several contributions to the group with members posting voice notes of screaming, yelling, groaning, and wailing in different rhythms and pitches. Calling out the “degenerate” community or the crypto obsessives that engage in high-risk trading, Co-founder of NFT renting protocol Rentable World emiliano.eth shared this group on his Twitter. He wrote: “hey degen, are you stressed? Just let it out all out. Voice only tg channel for screaming”. While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.”
from us


Telegram Python/ django
FROM American