PYTHONL Telegram 5146
Наглядное сравнение скорости нового Python 3.14 с предыдущей версией

Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.

Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.

Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.

Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.

Раньше поэтому многопоточность в Python фактически не работала.

🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.

Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.

🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.

📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.

💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.

Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading

@pythonl
👍2712🔥7



tgoop.com/pythonl/5146
Create:
Last Update:

Наглядное сравнение скорости нового Python 3.14 с предыдущей версией

Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.

Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.

Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.

Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.

Раньше поэтому многопоточность в Python фактически не работала.

🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.

Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.

🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.

📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.

💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.

Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading

@pythonl

BY Python/ django









Share with your friend now:
tgoop.com/pythonl/5146

View MORE
Open in Telegram


Telegram News

Date: |

As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. Choose quality over quantity. Remember that one high-quality post is better than five short publications of questionable value. While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. Telegram is a leading cloud-based instant messages platform. It became popular in recent years for its privacy, speed, voice and video quality, and other unmatched features over its main competitor Whatsapp.
from us


Telegram Python/ django
FROM American