PYTHONL Telegram 4798
🐍 Задача с подвохом: Декораторы и мутабельные ловушки

Условие:

Что выведет следующий код и почему?


def memoize(fn):
cache = {}
def wrapper(arg):
if arg in cache:
print("Из кэша")
return cache[arg]
else:
result = fn(arg)
cache[arg] = result
return result
return wrapper

@memoize
def add_to_list(val, lst=[]):
lst.append(val)
return lst

res1 = add_to_list(1)
res2 = add_to_list(2)
res3 = add_to_list(1)

print(res1)
print(res2)
print(res3)


Вопрос:
Что будет выведено? Где здесь двойной подвох?

🔍 Разбор:

На первый взгляд кажется, что:

1. add_to_list(1) вернёт [1]
2. add_to_list(2) вернёт [2]
3. add_to_list(1) снова вызовет функцию (или достанет из кэша)

Но тут два подвоха:

Подвох №1: изменяемый аргумент по умолчанию

Аргумент lst=[] создаётся один раз при определении функции. Все вызовы без передачи списка будут использовать один и тот же список.

Подвох №2: кэширование по ключу

Декоратор memoize кэширует результат по ключу arg. Но функция возвращает список, который изменяется при каждом вызове. Даже если кэш сработает, вы получите тот же объект списка, который менялся между вызовами!

🧮 Что реально произойдёт:

- `res1 = add_to_list(1)` → функция вызвана, список становится `[1]`
- `res2 = add_to_list(2)` → функция вызвана снова (новый аргумент), список становится `[1, 2]`
- `res3 = add_to_list(1)` → аргумент `1` есть в кэше, сработает ветка `print("Из кэша")` и вернётся **ссылку на тот же изменённый список**

🔢 **Вывод:**

```
[1, 2]
[1, 2]
Из кэша
[1, 2]
```

Все результаты указывают на один и тот же изменённый список.

💥 **Почему это важно:**

1️⃣ **Изменяемые аргументы по умолчанию** сохраняются между вызовами
2️⃣ **Кэширование мутабельных объектов** может привести к неожиданным результатам: при возврате списка вы возвращаете не "результат на момент вычисления", а ссылку на объект, который может измениться позже

🛡️ **Как исправить:**

1️⃣ Использовать `lst=None` и инициализировать внутри функции:
```python
def add_to_list(val, lst=None):
if lst is None:
lst = []
lst.append(val)
return lst
```

2️⃣ Если кэшировать мутабельные объекты, лучше возвращать **копию**:
```python
import copy
cache[arg] = copy.deepcopy(result)
```

**Вывод:**

Декораторы + мутабельные аргументы = ловушка даже для опытных разработчиков. Особенно, когда мутабельные объекты кэшируются и меняются за кулисами.


@pythonl



tgoop.com/pythonl/4798
Create:
Last Update:

🐍 Задача с подвохом: Декораторы и мутабельные ловушки

Условие:

Что выведет следующий код и почему?


def memoize(fn):
cache = {}
def wrapper(arg):
if arg in cache:
print("Из кэша")
return cache[arg]
else:
result = fn(arg)
cache[arg] = result
return result
return wrapper

@memoize
def add_to_list(val, lst=[]):
lst.append(val)
return lst

res1 = add_to_list(1)
res2 = add_to_list(2)
res3 = add_to_list(1)

print(res1)
print(res2)
print(res3)


Вопрос:
Что будет выведено? Где здесь двойной подвох?

🔍 Разбор:

На первый взгляд кажется, что:

1. add_to_list(1) вернёт [1]
2. add_to_list(2) вернёт [2]
3. add_to_list(1) снова вызовет функцию (или достанет из кэша)

Но тут два подвоха:

Подвох №1: изменяемый аргумент по умолчанию

Аргумент lst=[] создаётся один раз при определении функции. Все вызовы без передачи списка будут использовать один и тот же список.

Подвох №2: кэширование по ключу

Декоратор memoize кэширует результат по ключу arg. Но функция возвращает список, который изменяется при каждом вызове. Даже если кэш сработает, вы получите тот же объект списка, который менялся между вызовами!

🧮 Что реально произойдёт:

- `res1 = add_to_list(1)` → функция вызвана, список становится `[1]`
- `res2 = add_to_list(2)` → функция вызвана снова (новый аргумент), список становится `[1, 2]`
- `res3 = add_to_list(1)` → аргумент `1` есть в кэше, сработает ветка `print("Из кэша")` и вернётся **ссылку на тот же изменённый список**

🔢 **Вывод:**

```
[1, 2]
[1, 2]
Из кэша
[1, 2]
```

Все результаты указывают на один и тот же изменённый список.

💥 **Почему это важно:**

1️⃣ **Изменяемые аргументы по умолчанию** сохраняются между вызовами
2️⃣ **Кэширование мутабельных объектов** может привести к неожиданным результатам: при возврате списка вы возвращаете не "результат на момент вычисления", а ссылку на объект, который может измениться позже

🛡️ **Как исправить:**

1️⃣ Использовать `lst=None` и инициализировать внутри функции:
```python
def add_to_list(val, lst=None):
if lst is None:
lst = []
lst.append(val)
return lst
```

2️⃣ Если кэшировать мутабельные объекты, лучше возвращать **копию**:
```python
import copy
cache[arg] = copy.deepcopy(result)
```

**Вывод:**

Декораторы + мутабельные аргументы = ловушка даже для опытных разработчиков. Особенно, когда мутабельные объекты кэшируются и меняются за кулисами.


@pythonl

BY Python/ django


Share with your friend now:
tgoop.com/pythonl/4798

View MORE
Open in Telegram


Telegram News

Date: |

ZDNET RECOMMENDS Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. Hashtags are a fast way to find the correct information on social media. To put your content out there, be sure to add hashtags to each post. We have two intelligent tips to give you: Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. Concise
from us


Telegram Python/ django
FROM American