PYTHONL Telegram 4573
🌟 Model2Vec: создание компактных и быстрых моделей на основе Sentence Transformer.

Model2Vec - библиотека для создания компактных и быстрых моделей на основе предобученных Sentence Transformer моделей.

Model2Vec позволяет создавать эмбединг-модели слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными Sentence Transformer моделями.

Отличительные особенности:

🟢быстрая дистилляция, процесс создания модели занимает несколько минут;

🟢быстрый инференс, в 500 раз быстрее на CPU относительно родительской модели;

🟢BYOM и BYOV, можно использовать на любой Sentence Transformer модели с любым словарем;

🟢мультиязычность, все что нужно - только мультиязычная модель в качестве источника;

🟢интеграция с Huggingface, загрузка\выгрузка моделей привычными from_pretrained и push_to_hub.

Пайплайн Model2Vec трехэтапный. На первом этапе словарь пропускается через модель Sentence Transformer для получения векторов эмбедингов для каждого слова.

Далее, размерность полученных эмбеддингов сокращается с помощью метода главных компонент (PCA). Наконец, применяется zipf-взвешивание для учета частотности слов в словаре.

Model2Vec работает в двух режимах:

🟠Output, в котором модель работает подобно Sentence Transformer, используя subword токенизацию;

🟠Vocab, в котором создается набор статических эмбедингов слов, аналогично GloVe или Word2Vec.

Оценку производительности Model2Vec делали на наборе данных MTEB на задачах PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит по производительности GloVe и модели, основанные на WordLlama по всем задачам оценки.

▶️Пример дистилляции:


from model2vec.distill import distill

# Choose a Sentence Transformer model
model_name = "BAAI/bge-base-en-v1.5"

# Distill the model
m2v_model = distill(model_name=model_name, pca_dims=256)

# Save the model
m2v_model.save_pretrained("m2v_model")


▶️Пример инференса:


from model2vec import StaticModel

# Load a model from the HuggingFace hub, or a local one.
model_name = "minishlab/M2V_base_output"
# You can optionally pass a token if you're loading a private model
model = StaticModel.from_pretrained(model_name, token=None)

# Make embeddings
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])



📌Лицензирование : MIT License.


Набор моделей
GitHub


@pythonl

#AI #ML #LLM #Embedding #Model2Vec #python
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/pythonl/4573
Create:
Last Update:

🌟 Model2Vec: создание компактных и быстрых моделей на основе Sentence Transformer.

Model2Vec - библиотека для создания компактных и быстрых моделей на основе предобученных Sentence Transformer моделей.

Model2Vec позволяет создавать эмбединг-модели слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными Sentence Transformer моделями.

Отличительные особенности:

🟢быстрая дистилляция, процесс создания модели занимает несколько минут;

🟢быстрый инференс, в 500 раз быстрее на CPU относительно родительской модели;

🟢BYOM и BYOV, можно использовать на любой Sentence Transformer модели с любым словарем;

🟢мультиязычность, все что нужно - только мультиязычная модель в качестве источника;

🟢интеграция с Huggingface, загрузка\выгрузка моделей привычными from_pretrained и push_to_hub.

Пайплайн Model2Vec трехэтапный. На первом этапе словарь пропускается через модель Sentence Transformer для получения векторов эмбедингов для каждого слова.

Далее, размерность полученных эмбеддингов сокращается с помощью метода главных компонент (PCA). Наконец, применяется zipf-взвешивание для учета частотности слов в словаре.

Model2Vec работает в двух режимах:

🟠Output, в котором модель работает подобно Sentence Transformer, используя subword токенизацию;

🟠Vocab, в котором создается набор статических эмбедингов слов, аналогично GloVe или Word2Vec.

Оценку производительности Model2Vec делали на наборе данных MTEB на задачах PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит по производительности GloVe и модели, основанные на WordLlama по всем задачам оценки.

▶️Пример дистилляции:


from model2vec.distill import distill

# Choose a Sentence Transformer model
model_name = "BAAI/bge-base-en-v1.5"

# Distill the model
m2v_model = distill(model_name=model_name, pca_dims=256)

# Save the model
m2v_model.save_pretrained("m2v_model")


▶️Пример инференса:


from model2vec import StaticModel

# Load a model from the HuggingFace hub, or a local one.
model_name = "minishlab/M2V_base_output"
# You can optionally pass a token if you're loading a private model
model = StaticModel.from_pretrained(model_name, token=None)

# Make embeddings
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])



📌Лицензирование : MIT License.


Набор моделей
GitHub


@pythonl

#AI #ML #LLM #Embedding #Model2Vec #python

BY Python/ django





Share with your friend now:
tgoop.com/pythonl/4573

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? The best encrypted messaging apps End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.”
from us


Telegram Python/ django
FROM American