tgoop.com/python_real/983
Last Update:
Представляем DuckDB
Если вы работаете с анализом данных в Python, скорее всего, вы используете такие библиотеки, как Pandas, NumPy и SQL. Но если ваши наборы данных становятся слишком большими для оперативной памяти или вы хотите более эффективную обработку, стоит обратить внимание на DuckDB — встроенную колонко-ориентированную СУБД, идеально подходящую для аналитических задач.
DuckDB позволяет запускать SQL-запросы прямо в Python, работать с DataFrame, Parquet, CSV и другими источниками данных без необходимости в отдельном сервере БД. Он прост в установке, кроссплатформенный и совместим с Pandas.
Основные фишки DuckDB:
- SQL-интерфейс, работающий с Pandas DataFrame, Arrow, Parquet и др.
- Высокая производительность благодаря колонко-ориентированному движку.
- Поддержка сложных SQL-запросов, включая оконные функции и CTE.
- Отсутствие необходимости в сервере — всё работает локально и быстро.
Пример использования:
import duckdb
import pandas as pd
df = pd.read_csv("data.csv")
result = duckdb.query("SELECT column1, AVG(column2) FROM df GROUP BY column1").to_df()
Вы также можете напрямую читать файлы:
result = duckdb.query("SELECT * FROM 'data.parquet' WHERE value > 100").to_df()
DuckDB отлично справляется с задачами типа:
- Быстрый SQL-анализ локальных файлов
- Встраивание SQL в Python без необходимости запускать Postgres/MySQL
- Обработка больших таблиц без загрузки всего в память
https://realpython.com/python-duckdb/
#python
👉 @python_real
BY Реальный Python

Share with your friend now:
tgoop.com/python_real/983