PYTHON_JOB_INTERVIEW Telegram 1189
NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍3🔥2



tgoop.com/python_job_interview/1189
Create:
Last Update:

NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml

BY Python вопросы с собеседований











Share with your friend now:
tgoop.com/python_job_interview/1189

View MORE
Open in Telegram


Telegram News

Date: |

A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.” Telegram users themselves will be able to flag and report potentially false content. Some Telegram Channels content management tips With the “Bear Market Screaming Therapy Group,” we’ve now transcended language. Telegram desktop app: In the upper left corner, click the Menu icon (the one with three lines). Select “New Channel” from the drop-down menu.
from us


Telegram Python вопросы с собеседований
FROM American