PYTHON_JOB_INTERVIEW Telegram 1188
NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍3🔥2



tgoop.com/python_job_interview/1188
Create:
Last Update:

NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml

BY Python вопросы с собеседований











Share with your friend now:
tgoop.com/python_job_interview/1188

View MORE
Open in Telegram


Telegram News

Date: |

Read now While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. The best encrypted messaging apps Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019.
from us


Telegram Python вопросы с собеседований
FROM American