PYTHON_JOB_INTERVIEW Telegram 1184
NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍3🔥2



tgoop.com/python_job_interview/1184
Create:
Last Update:

NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml

BY Python вопросы с собеседований











Share with your friend now:
tgoop.com/python_job_interview/1184

View MORE
Open in Telegram


Telegram News

Date: |

The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. With the “Bear Market Screaming Therapy Group,” we’ve now transcended language. Telegram Android app: Open the chats list, click the menu icon and select “New Channel.” Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. There have been several contributions to the group with members posting voice notes of screaming, yelling, groaning, and wailing in different rhythms and pitches. Calling out the “degenerate” community or the crypto obsessives that engage in high-risk trading, Co-founder of NFT renting protocol Rentable World emiliano.eth shared this group on his Twitter. He wrote: “hey degen, are you stressed? Just let it out all out. Voice only tg channel for screaming”.
from us


Telegram Python вопросы с собеседований
FROM American