PYTHON_CODES Telegram 262
Basic NumPy for beginners:

Creating a NumPy array: To create a NumPy array from a list or tuple, you can use the np.array() function. For example, the following code creates a NumPy array from a list of numbers:

import numpy as np

# Create a NumPy array from a list of numbers
numbers = [1, 2, 3, 4, 5]
numbers_array = np.array(numbers)

# Print the array
print(numbers_array)

output:
[1 2 3 4 5]

Basic mathematical operations: NumPy provides functions for performing mathematical operations on arrays, such as addition, subtraction, multiplication, and division. These operations can be performed element-wise, allowing for efficient computation on large datasets. For example, the following code adds two NumPy arrays element-wise:

import numpy as np

# Create two NumPy arrays
x = np.array([1, 2, 3, 4, 5])
y = np.array([6, 7, 8, 9, 10])

# Add the arrays element-wise
z = x + y

# Print the result
print(z)

output:
[ 7 9 11 13 15]

Indexing and slicing: NumPy arrays can be indexed and sliced just like lists. This allows you to access and manipulate specific elements or subarrays within an array. For example, the following code slices a NumPy array to extract the second and third elements:

import numpy as np

# Create a NumPy array
numbers = np.array([1, 2, 3, 4, 5])

# Slice the array to extract the second and third elements
subarray = numbers[1:3]

# Print the result
print(subarray)

output:
[2 3]

Share and Support
@Python_Codes



tgoop.com/python_codes/262
Create:
Last Update:

Basic NumPy for beginners:

Creating a NumPy array: To create a NumPy array from a list or tuple, you can use the np.array() function. For example, the following code creates a NumPy array from a list of numbers:

import numpy as np

# Create a NumPy array from a list of numbers
numbers = [1, 2, 3, 4, 5]
numbers_array = np.array(numbers)

# Print the array
print(numbers_array)

output:
[1 2 3 4 5]

Basic mathematical operations: NumPy provides functions for performing mathematical operations on arrays, such as addition, subtraction, multiplication, and division. These operations can be performed element-wise, allowing for efficient computation on large datasets. For example, the following code adds two NumPy arrays element-wise:

import numpy as np

# Create two NumPy arrays
x = np.array([1, 2, 3, 4, 5])
y = np.array([6, 7, 8, 9, 10])

# Add the arrays element-wise
z = x + y

# Print the result
print(z)

output:
[ 7 9 11 13 15]

Indexing and slicing: NumPy arrays can be indexed and sliced just like lists. This allows you to access and manipulate specific elements or subarrays within an array. For example, the following code slices a NumPy array to extract the second and third elements:

import numpy as np

# Create a NumPy array
numbers = np.array([1, 2, 3, 4, 5])

# Slice the array to extract the second and third elements
subarray = numbers[1:3]

# Print the result
print(subarray)

output:
[2 3]

Share and Support
@Python_Codes

BY Python Codes


Share with your friend now:
tgoop.com/python_codes/262

View MORE
Open in Telegram


Telegram News

Date: |

It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart. Some Telegram Channels content management tips 3How to create a Telegram channel? Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day. Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN.
from us


Telegram Python Codes
FROM American