PYPROGLIB Telegram 6508
Чек-лист: 5 приемов ускорения Python

👍 JIT-компиляция с Numba:
Numba — это JIT-компилятор, который переводит код Python в быстрый машинный код. Добавив декоратор @jit, вы можете ускорить вычисления в циклах и операциях с массивами.

Пример:
from numba import jit
import numpy as np
import time

@jit(nopython=True)
def sum_squares(arr):
total = 0
for i in range(arr.shape[0]):
total += arr[i] * arr[i]
return total

data = np.arange(1000000)
start = time.time()
result = sum_squares(data)
end = time.time()
print("Numba JIT:", result, "Time:", end - start)


Результат
: прирост производительности до 10-30 раз.

👍 Многозадачность:
Python ограничивает многозадачность из-за GIL, но для вычислительно сложных задач можно использовать многопроцессорность, чтобы обойти это ограничение.

Пример:
import multiprocessing as mp

def process_image(image):
return image ** 2

if __name__ == '__main__':
images = range(20)
with mp.Pool(mp.cpu_count()) as pool:
results = pool.map(process_image, images)
print(results)


👍 Cython и PyPy:
Cython компилирует Python в C, что ускоряет выполнение кода. PyPy — это JIT-компилятор, который улучшает производительность без изменения кода.

Пример: С использованием Cython можно ускорить код, написав его в файле .pyx, а с PyPy просто сменив интерпретатор.

👍 Правильные структуры данных:
Используйте более эффективные структуры данных, такие как массивы NumPy, вместо списков Python для числовых вычислений. Это ускоряет выполнение и экономит память.

Пример:
import numpy as np
data = np.arange(1000000)
result = data * 2


Векторизация операций с NumPy может быть в 50 раз быстрее.

👍 Инструменты профилирования:
Профилирование помогает понять, какие части кода нуждаются в оптимизации. Используйте cProfile и line_profiler для анализа производительности.

Пример:
import cProfile

def heavy_computation():
return sum([i * i for i in range(1000000)])

cProfile.run('heavy_computation()')


Это поможет найти узкие места и ускорить работу.

Библиотека питониста #буст
👍213🔥3



tgoop.com/pyproglib/6508
Create:
Last Update:

Чек-лист: 5 приемов ускорения Python

👍 JIT-компиляция с Numba:
Numba — это JIT-компилятор, который переводит код Python в быстрый машинный код. Добавив декоратор @jit, вы можете ускорить вычисления в циклах и операциях с массивами.

Пример:

from numba import jit
import numpy as np
import time

@jit(nopython=True)
def sum_squares(arr):
total = 0
for i in range(arr.shape[0]):
total += arr[i] * arr[i]
return total

data = np.arange(1000000)
start = time.time()
result = sum_squares(data)
end = time.time()
print("Numba JIT:", result, "Time:", end - start)


Результат
: прирост производительности до 10-30 раз.

👍 Многозадачность:
Python ограничивает многозадачность из-за GIL, но для вычислительно сложных задач можно использовать многопроцессорность, чтобы обойти это ограничение.

Пример:
import multiprocessing as mp

def process_image(image):
return image ** 2

if __name__ == '__main__':
images = range(20)
with mp.Pool(mp.cpu_count()) as pool:
results = pool.map(process_image, images)
print(results)


👍 Cython и PyPy:
Cython компилирует Python в C, что ускоряет выполнение кода. PyPy — это JIT-компилятор, который улучшает производительность без изменения кода.

Пример: С использованием Cython можно ускорить код, написав его в файле .pyx, а с PyPy просто сменив интерпретатор.

👍 Правильные структуры данных:
Используйте более эффективные структуры данных, такие как массивы NumPy, вместо списков Python для числовых вычислений. Это ускоряет выполнение и экономит память.

Пример:
import numpy as np
data = np.arange(1000000)
result = data * 2


Векторизация операций с NumPy может быть в 50 раз быстрее.

👍 Инструменты профилирования:
Профилирование помогает понять, какие части кода нуждаются в оптимизации. Используйте cProfile и line_profiler для анализа производительности.

Пример:
import cProfile

def heavy_computation():
return sum([i * i for i in range(1000000)])

cProfile.run('heavy_computation()')


Это поможет найти узкие места и ускорить работу.

Библиотека питониста #буст

BY Библиотека питониста | Python, Django, Flask




Share with your friend now:
tgoop.com/pyproglib/6508

View MORE
Open in Telegram


Telegram News

Date: |

A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.” Telegram has announced a number of measures aiming to tackle the spread of disinformation through its platform in Brazil. These features are part of an agreement between the platform and the country's authorities ahead of the elections in October. Write your hashtags in the language of your target audience. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. Hashtags are a fast way to find the correct information on social media. To put your content out there, be sure to add hashtags to each post. We have two intelligent tips to give you:
from us


Telegram Библиотека питониста | Python, Django, Flask
FROM American