PWNAI Telegram 1041
Недавно Veracode опубликовал отчёт, в котором исследовал безопасность кода, сгенерированного различными LLM.

Результаты оказались тревожными и ожидаемыми: в 45% случаев ИИ-сгенерированный код содержал уязвимости, включённые в список OWASP Top 10 для веба.💯

Исследование охватило более 100 моделей и 80 программных задач на четырёх языках: Java, JavaScript, C# и Python. Выяснилось, что ни масштаб модели, ни её актуальность не влияют на безопасность генерируемого кода. Хотя синтаксическая корректность за два года существенно возросла, уровень безопасности остался практически неизменным.🤔

Наименее защищённый код генерируется для Java: лишь 28,5% решений оказались безопасными. Этот показатель в 2,1 раза ниже, чем у Python (61,7%), и на 28,5% хуже результата по JavaScript (57%). Причина — в обучающих данных: в Java-проектах исторически преобладают уязвимые примеры, например реализации с SQL-инъекциями.

По разным типам уязвимостей результаты сильно варьируются.😩 Модели эффективно предотвращают SQL-инъекции и некорректное использование криптографических алгоритмов (80–85% безопасного кода). Однако защита от XSS и Log Injection остаётся низкой: безопасные решения встречаются лишь в 13–14% случаев. Причина в том, что для предотвращения таких уязвимостей требуется анализ контекста использования данных и понимание, какие данные нуждаются в очистке. LLM не способны на такой глубокий анализ.

Проблема связана с качеством обучающих данных. В открытых источниках, очевидно, преобладает код с уязвимостями, включая заведомо уязвимые приложения. Модели не умеют различать безопасные и уязвимые паттерны, интерпретируя оба варианта как допустимые решения
Veracode предупреждает, что компании, активно внедряющие ИИ в разработку, могут незаметно увеличивать тех.долг и риски кибербезопасности. Вайб-кодинг создаёт проблемы стабильности решения, а код требует серьёзных усилий по проверке и доработке.🧐

Вывод отчёта однозначен: LLM не могут самостоятельно обеспечить безопасность кода, несмотря на технический прогресс. Обязательными мерами должны быть (кто же, ну конечно) SAST-решения, автофиксы и обучение разработчиков правильному использованию ИИ при генерации кода.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7💯211



tgoop.com/pwnai/1041
Create:
Last Update:

Недавно Veracode опубликовал отчёт, в котором исследовал безопасность кода, сгенерированного различными LLM.

Результаты оказались тревожными и ожидаемыми: в 45% случаев ИИ-сгенерированный код содержал уязвимости, включённые в список OWASP Top 10 для веба.💯

Исследование охватило более 100 моделей и 80 программных задач на четырёх языках: Java, JavaScript, C# и Python. Выяснилось, что ни масштаб модели, ни её актуальность не влияют на безопасность генерируемого кода. Хотя синтаксическая корректность за два года существенно возросла, уровень безопасности остался практически неизменным.🤔

Наименее защищённый код генерируется для Java: лишь 28,5% решений оказались безопасными. Этот показатель в 2,1 раза ниже, чем у Python (61,7%), и на 28,5% хуже результата по JavaScript (57%). Причина — в обучающих данных: в Java-проектах исторически преобладают уязвимые примеры, например реализации с SQL-инъекциями.

По разным типам уязвимостей результаты сильно варьируются.😩 Модели эффективно предотвращают SQL-инъекции и некорректное использование криптографических алгоритмов (80–85% безопасного кода). Однако защита от XSS и Log Injection остаётся низкой: безопасные решения встречаются лишь в 13–14% случаев. Причина в том, что для предотвращения таких уязвимостей требуется анализ контекста использования данных и понимание, какие данные нуждаются в очистке. LLM не способны на такой глубокий анализ.

Проблема связана с качеством обучающих данных. В открытых источниках, очевидно, преобладает код с уязвимостями, включая заведомо уязвимые приложения. Модели не умеют различать безопасные и уязвимые паттерны, интерпретируя оба варианта как допустимые решения
Veracode предупреждает, что компании, активно внедряющие ИИ в разработку, могут незаметно увеличивать тех.долг и риски кибербезопасности. Вайб-кодинг создаёт проблемы стабильности решения, а код требует серьёзных усилий по проверке и доработке.🧐

Вывод отчёта однозначен: LLM не могут самостоятельно обеспечить безопасность кода, несмотря на технический прогресс. Обязательными мерами должны быть (кто же, ну конечно) SAST-решения, автофиксы и обучение разработчиков правильному использованию ИИ при генерации кода.

BY PWN AI






Share with your friend now:
tgoop.com/pwnai/1041

View MORE
Open in Telegram


Telegram News

Date: |

Deputy District Judge Peter Hui sentenced computer technician Ng Man-ho on Thursday, a month after the 27-year-old, who ran a Telegram group called SUCK Channel, was found guilty of seven charges of conspiring to incite others to commit illegal acts during the 2019 extradition bill protests and subsequent months. While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. “Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more.
from us


Telegram PWN AI
FROM American