PRO_PYTHON_CODE Telegram 1862
Forwarded from Machinelearning
🌟 HumanOmniV2: модель, которая понимает контекст видео.

Alibaba Group разработали HumanOmniV2, модель на базе Qwen2.5-Omni-7B-thinker, которая получила навык осмысления визуального контекста за счет изменения самого процесса мышления модели. Ее научили следовать строгому формату: сначала описать контекст, потом рассуждать и только затем давать ответ.

Теперь, прежде чем отвечать на вопрос, модель генерирует подробное описание сцены в теге <context>. На этом этапе она фиксирует, кто что делает, какой фон, какие звуки слышны. Только после этого в теге <think> она строит логическую цепочку рассуждений, связывая вопрос с собранным контекстом. И лишь в конце выдает результат в теге <answer> .

Чтобы этот подход работал, его усилили системой вознаграждений на основе RL. За точность и правильный формат модель получает стандартные награды, но были введены и две новых:

🟢«Награда за контекст» дается, если его описание полное и релевантное, причем качество этого описания оценивает другая, более мощная LLM;

🟢«Логическая награда» проверяет, что в своих рассуждениях модель действительно использовала данные из видео и аудио, а не проигнорировала их.

Для оценки HumanOmniV2 создали бенчмарк IntentBench (633 видео, 2689 вопросов) на основе Social-IQ 2.0, EMER и MDPE.

Его фишка в том, что вопросы требуют одновременного анализа: видеоряда (жесты, микровыражения), диалогов (тон, смысл реплик) и социального контекста (ирония, обман, скрытые намерения).

Тестовая модель обошла открытые аналоги на 3 бенчмарках:

🟠Daily-Omni: 58.47% (53.13% у MiniCPM-o 2.6);
🟠WorldSense: 47.1% (45.4% у Qwen2.5-Omni);
🟠IntentBench: 69.33% (64.20% у Qwen2.5-Omni).


📌Лицензирование: Apache 2.0 License.


🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #HumanOmniV2 #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2



tgoop.com/pro_python_code/1862
Create:
Last Update:

🌟 HumanOmniV2: модель, которая понимает контекст видео.

Alibaba Group разработали HumanOmniV2, модель на базе Qwen2.5-Omni-7B-thinker, которая получила навык осмысления визуального контекста за счет изменения самого процесса мышления модели. Ее научили следовать строгому формату: сначала описать контекст, потом рассуждать и только затем давать ответ.

Теперь, прежде чем отвечать на вопрос, модель генерирует подробное описание сцены в теге <context>. На этом этапе она фиксирует, кто что делает, какой фон, какие звуки слышны. Только после этого в теге <think> она строит логическую цепочку рассуждений, связывая вопрос с собранным контекстом. И лишь в конце выдает результат в теге <answer> .

Чтобы этот подход работал, его усилили системой вознаграждений на основе RL. За точность и правильный формат модель получает стандартные награды, но были введены и две новых:

🟢«Награда за контекст» дается, если его описание полное и релевантное, причем качество этого описания оценивает другая, более мощная LLM;

🟢«Логическая награда» проверяет, что в своих рассуждениях модель действительно использовала данные из видео и аудио, а не проигнорировала их.

Для оценки HumanOmniV2 создали бенчмарк IntentBench (633 видео, 2689 вопросов) на основе Social-IQ 2.0, EMER и MDPE.

Его фишка в том, что вопросы требуют одновременного анализа: видеоряда (жесты, микровыражения), диалогов (тон, смысл реплик) и социального контекста (ирония, обман, скрытые намерения).

Тестовая модель обошла открытые аналоги на 3 бенчмарках:

🟠Daily-Omni: 58.47% (53.13% у MiniCPM-o 2.6);
🟠WorldSense: 47.1% (45.4% у Qwen2.5-Omni);
🟠IntentBench: 69.33% (64.20% у Qwen2.5-Omni).


📌Лицензирование: Apache 2.0 License.


🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #HumanOmniV2 #Alibaba

BY Python RU






Share with your friend now:
tgoop.com/pro_python_code/1862

View MORE
Open in Telegram


Telegram News

Date: |

Image: Telegram. Your posting frequency depends on the topic of your channel. If you have a news channel, it’s OK to publish new content every day (or even every hour). For other industries, stick with 2-3 large posts a week. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. How to Create a Private or Public Channel on Telegram? fire bomb molotov November 18 Dylan Hollingsworth yau ma tei
from us


Telegram Python RU
FROM American