Машинное и глубокое обучение ОНЛАЙН-УЧЕБНИК Виктор Владимирович Китов
Учебник содержит выжимку основных материалов на основе читаемых автором курсов на факультете вычислительной математики и кибернетики (ВМК) в МГУ им. М.В.Ломоносова, а также в магистратуре Т-Банка для студентов МФТИ.
Этот онлайн-учебник посвящен увлекательной, перспективной и бурно развивающейся теме машинного обучения (machine learning) и глубокого обучения (deep learning), позволяющей наделять компьютерные программы возможностью принимать сложные интеллектуальные решения, автоматически настраиваемые по наблюдаемым данным. В первой части учебника (машинное обучение) рассматриваются основные задачи и понятия машинного обучения, методы их решения, оценка качества результатов и способы интерпретации моделей машинного обучения. Во второй части (глубокое обучение) изучаются нейронные сети, способы их эффективной настройки и архитектуры для решения различных задач.
Цель учебника состоит в том, чтобы предоставить образовательные материалы в открытый доступ для широкого круга читателей, как совсем не знакомых с областью, так и имеющих в ней некоторый опыт. Описание даётся как на интуитивном уровне, так и используя математические выкладки, поэтому предполагается знакомство читателя с основами математического анализа, теории вероятностей и математической статистикой. За исключением основ высшей математики, учебник полностью самодостаточный. Предварительного знакомства читателя с машинным обучения не требуется, поскольку в учебнике описывается весь цикл разработки моделей от постановки задачи и подготовки данных до оценки качества прогнозов и интерпретации результатов.
Для обратной связи по сайту, материалам и общим вопросам пишите на [email protected].
С правами использования материала учебника вы можете ознакомиться в разделе лицензия.
Разработка и систематизация материалов поддержана грантом некоммерческого фонда развития науки и образования «Интеллект».
📓 Ссылка на книгу
Учебник содержит выжимку основных материалов на основе читаемых автором курсов на факультете вычислительной математики и кибернетики (ВМК) в МГУ им. М.В.Ломоносова, а также в магистратуре Т-Банка для студентов МФТИ.
Этот онлайн-учебник посвящен увлекательной, перспективной и бурно развивающейся теме машинного обучения (machine learning) и глубокого обучения (deep learning), позволяющей наделять компьютерные программы возможностью принимать сложные интеллектуальные решения, автоматически настраиваемые по наблюдаемым данным. В первой части учебника (машинное обучение) рассматриваются основные задачи и понятия машинного обучения, методы их решения, оценка качества результатов и способы интерпретации моделей машинного обучения. Во второй части (глубокое обучение) изучаются нейронные сети, способы их эффективной настройки и архитектуры для решения различных задач.
Цель учебника состоит в том, чтобы предоставить образовательные материалы в открытый доступ для широкого круга читателей, как совсем не знакомых с областью, так и имеющих в ней некоторый опыт. Описание даётся как на интуитивном уровне, так и используя математические выкладки, поэтому предполагается знакомство читателя с основами математического анализа, теории вероятностей и математической статистикой. За исключением основ высшей математики, учебник полностью самодостаточный. Предварительного знакомства читателя с машинным обучения не требуется, поскольку в учебнике описывается весь цикл разработки моделей от постановки задачи и подготовки данных до оценки качества прогнозов и интерпретации результатов.
Для обратной связи по сайту, материалам и общим вопросам пишите на [email protected].
С правами использования материала учебника вы можете ознакомиться в разделе лицензия.
Разработка и систематизация материалов поддержана грантом некоммерческого фонда развития науки и образования «Интеллект».
📓 Ссылка на книгу
tgoop.com/pro_python_code/1728
Create:
Last Update:
Last Update:
Машинное и глубокое обучение ОНЛАЙН-УЧЕБНИК Виктор Владимирович Китов
Учебник содержит выжимку основных материалов на основе читаемых автором курсов на факультете вычислительной математики и кибернетики (ВМК) в МГУ им. М.В.Ломоносова, а также в магистратуре Т-Банка для студентов МФТИ.
Этот онлайн-учебник посвящен увлекательной, перспективной и бурно развивающейся теме машинного обучения (machine learning) и глубокого обучения (deep learning), позволяющей наделять компьютерные программы возможностью принимать сложные интеллектуальные решения, автоматически настраиваемые по наблюдаемым данным. В первой части учебника (машинное обучение) рассматриваются основные задачи и понятия машинного обучения, методы их решения, оценка качества результатов и способы интерпретации моделей машинного обучения. Во второй части (глубокое обучение) изучаются нейронные сети, способы их эффективной настройки и архитектуры для решения различных задач.
Цель учебника состоит в том, чтобы предоставить образовательные материалы в открытый доступ для широкого круга читателей, как совсем не знакомых с областью, так и имеющих в ней некоторый опыт. Описание даётся как на интуитивном уровне, так и используя математические выкладки, поэтому предполагается знакомство читателя с основами математического анализа, теории вероятностей и математической статистикой. За исключением основ высшей математики, учебник полностью самодостаточный. Предварительного знакомства читателя с машинным обучения не требуется, поскольку в учебнике описывается весь цикл разработки моделей от постановки задачи и подготовки данных до оценки качества прогнозов и интерпретации результатов.
Для обратной связи по сайту, материалам и общим вопросам пишите на [email protected].
С правами использования материала учебника вы можете ознакомиться в разделе лицензия.
Разработка и систематизация материалов поддержана грантом некоммерческого фонда развития науки и образования «Интеллект».
📓 Ссылка на книгу
Учебник содержит выжимку основных материалов на основе читаемых автором курсов на факультете вычислительной математики и кибернетики (ВМК) в МГУ им. М.В.Ломоносова, а также в магистратуре Т-Банка для студентов МФТИ.
Этот онлайн-учебник посвящен увлекательной, перспективной и бурно развивающейся теме машинного обучения (machine learning) и глубокого обучения (deep learning), позволяющей наделять компьютерные программы возможностью принимать сложные интеллектуальные решения, автоматически настраиваемые по наблюдаемым данным. В первой части учебника (машинное обучение) рассматриваются основные задачи и понятия машинного обучения, методы их решения, оценка качества результатов и способы интерпретации моделей машинного обучения. Во второй части (глубокое обучение) изучаются нейронные сети, способы их эффективной настройки и архитектуры для решения различных задач.
Цель учебника состоит в том, чтобы предоставить образовательные материалы в открытый доступ для широкого круга читателей, как совсем не знакомых с областью, так и имеющих в ней некоторый опыт. Описание даётся как на интуитивном уровне, так и используя математические выкладки, поэтому предполагается знакомство читателя с основами математического анализа, теории вероятностей и математической статистикой. За исключением основ высшей математики, учебник полностью самодостаточный. Предварительного знакомства читателя с машинным обучения не требуется, поскольку в учебнике описывается весь цикл разработки моделей от постановки задачи и подготовки данных до оценки качества прогнозов и интерпретации результатов.
Для обратной связи по сайту, материалам и общим вопросам пишите на [email protected].
С правами использования материала учебника вы можете ознакомиться в разделе лицензия.
Разработка и систематизация материалов поддержана грантом некоммерческого фонда развития науки и образования «Интеллект».
📓 Ссылка на книгу
BY Python RU


Share with your friend now:
tgoop.com/pro_python_code/1728