tgoop.com/practicum_math/849
Last Update:
3 + 3 ≠ 6
К ней обычно обращаются физики, химики, криптографы, робототехники. Но есть и те, кто занимается узлами профессионально — топологи. И недавно два таких специалиста совершили небольшое, но очень громкое открытие.
Сьюзан Хермиллер и Марк Бриттенхэм провели масштабные вычислительные эксперименты с использованием программы SnapPy. Она позволяет распознавать эквивалентные узлы.
Авторы применяли все возможные «смены перекрёстков» для миллионов диаграмм, пополняя базу данных верхних оценок числа развязывания.
Он построен на основе двух копий 2,7-торического узла с числом развязывания 3. Их сумма имеет число развязывания 5, а не 6, как диктовала гипотеза. То есть распутать «сдвоенный» узел можно быстрее, чем просто сложить «этапы» отдельных узлов.
И, как часто бывает, на основе контрпримера исследователи построили целое семейство подобных сумм узлов, где аддитивность не соблюдается.
Как выглядит прорыв — показали на последней карточке.
Отметим, что открытие было бы невозможно без мощного компьютерного компонента: сочетание вычислительных поисков и анализа диаграмм узлов сыграло ключевую роль.
Если вас заинтересовали узлы — присоединяйтесь к поискам. А если нет, загляните сюда и сюда: там мы рассказывали о других неизведанных областях математики. Открытия ждут вас!
#как_устроено