tgoop.com/practicum_math/848
Create:
Last Update:
Last Update:
Математики в этой задаче больше, чем может показаться на первый взгляд. И решение не из самых коротких. Разобьём его на шаги:
Волшебник B изначально знает только, что сумма равна S. Когда он спрашивает про возраст волшебника А (P) и число его детей (k), он подразумевает, что пара (P, k) однозначно определяет разбиение суммы S на k положительных целых частей.
Волшебник А отвечает: «Нет». Значит, для реальной пары (P, k), соответствующей словам А, существует более одного набора k положительных целых чисел с суммой S и произведением P. Другими словами, даже зная P и k, возраста детей всё ещё неоднозначны.
среди всех возможных разбиений суммы S на положительные целые с разными произведениями ровно одно произведение P даёт такую «внутреннюю» неоднозначность по числу детей.
То есть ровно один P для данного S имеет свойство: «существует хотя бы два разных разбиения с той же парой (P, k)». Тогда волшебник B, зная только S и услышав «Нет», может однозначно выбрать это единственное P.
Перебирая возможные суммы, видно, что единственная сумма S, для которой существует ровно одно произведение P, дающее описанную неоднозначность, — это 12. Для S = 12 есть ровно одно проблемное произведение P = 48 с k = 4, потому что:
Два разных набора из 4 положительных целых чисел, сумма которых 12, дают одинаковое произведение 48:🔸 1, 3, 4, 4 (сумма 1 + 3 + 4 + 4 = 12, произведение 1 ⋅ 3 ⋅ 4 ⋅ 4 = 48)🔸 2, 2, 2, 6 (сумма 2 + 2 + 2 + 6 = 12, произведение 2 ⋅ 2 ⋅ 2 ⋅ 6 = 48).
Таким образом, получаем ответ:
Ну как, что-нибудь понятно? Если нет, советуем прочитать подробное обсуждение задачи и другие её обобщения здесь.
#задача