PHYSICS_LIB Telegram 14478
🌐 Задача: «Разноцветные тупоугольные треугольники на сфере»

Рассмотрим множество из n точек на единичной сфере в трёхмерном пространстве. Предположим, что никакие три точки не лежат на одном большом круге (т.е. находятся в общем положении). Это означает, что любые три точки образуют невырожденный сферический треугольник. Каждую точку мы красим в один из k цветов.

Вопрос: Каково минимальное число n(k), при котором для любой раскраски n(k) точек в k цветов обязательно найдётся одноцветный набор точек, образующий тупоугольный сферический треугольник?
Примечание: Сферический треугольник называется тупоугольным, если хотя бы один из его углов строго больше 90°.

Связь с классическими задачами: Эта задача является далёким и сложным «родственником» классической теории Рамсея. Вместо поиска моноклики в графе мы ищем конфигурацию точек с определённым геометрическим свойством (тупоугольность). Она также перекликается с задачами о хроматическом числе пространства, но на сфере и с жёстким геометрическим условием. Почему это интересно?

▪️ Геометрический комбинаторный поворот: Сочетание дискретной математики (раскраска) и непрерывной геометрии (свойства на сфере).
▪️ Нетривиальная нижняя оценка: Уже для k=2 (два цвета) задача неочевидна. Можно ли разместить много точек двух цветов так, чтобы все одноцветные треугольники были остроугольными? Это сложная задача на конструкцию.
▪️ Верхняя оценка с помощью Рамсея: Существование числа n(k) доказывается с помощью применения Теоремы Рамсея для гиперграфов, но полученная этим путём оценка будет астрономически большой. Интересно найти более разумные, «человеческие» оценки.
▪️ Открытость: Точные значения n(k) вряд ли известны даже для малых k (напр., k=2, 3). Это порождает пространство для дискуссий, гипотез и поиска частных случаев.

1. Какая конструкция для k = 2 даёт хорошую нижнюю оценку? Может использовать правильный октаэдр?
2. Как можно улучшить верхнюю оценку, используя не общий теорему Рамсея, а специфику геометрии сферы?
3. Верно ли утверждение, если заменить тупоугольность на остроугольность?
4. Как задача упростится, если мы будем рассматривать точки не на сфере, а на окружности?

Эта задача бросает вызов интуиции и требует как комбинаторной изобретательности, так и геометрического зрения. #математика #олимпиады #геометрия #комбинаторика #теория_вероятностей #math #geometry #задачи

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
30👍14🔥11🤯6🤔5😱3



tgoop.com/physics_lib/14478
Create:
Last Update:

🌐 Задача: «Разноцветные тупоугольные треугольники на сфере»

Рассмотрим множество из n точек на единичной сфере в трёхмерном пространстве. Предположим, что никакие три точки не лежат на одном большом круге (т.е. находятся в общем положении). Это означает, что любые три точки образуют невырожденный сферический треугольник. Каждую точку мы красим в один из k цветов.

Вопрос: Каково минимальное число n(k), при котором для любой раскраски n(k) точек в k цветов обязательно найдётся одноцветный набор точек, образующий тупоугольный сферический треугольник?
Примечание: Сферический треугольник называется тупоугольным, если хотя бы один из его углов строго больше 90°.

Связь с классическими задачами: Эта задача является далёким и сложным «родственником» классической теории Рамсея. Вместо поиска моноклики в графе мы ищем конфигурацию точек с определённым геометрическим свойством (тупоугольность). Она также перекликается с задачами о хроматическом числе пространства, но на сфере и с жёстким геометрическим условием. Почему это интересно?

▪️ Геометрический комбинаторный поворот: Сочетание дискретной математики (раскраска) и непрерывной геометрии (свойства на сфере).
▪️ Нетривиальная нижняя оценка: Уже для k=2 (два цвета) задача неочевидна. Можно ли разместить много точек двух цветов так, чтобы все одноцветные треугольники были остроугольными? Это сложная задача на конструкцию.
▪️ Верхняя оценка с помощью Рамсея: Существование числа n(k) доказывается с помощью применения Теоремы Рамсея для гиперграфов, но полученная этим путём оценка будет астрономически большой. Интересно найти более разумные, «человеческие» оценки.
▪️ Открытость: Точные значения n(k) вряд ли известны даже для малых k (напр., k=2, 3). Это порождает пространство для дискуссий, гипотез и поиска частных случаев.

1. Какая конструкция для k = 2 даёт хорошую нижнюю оценку? Может использовать правильный октаэдр?
2. Как можно улучшить верхнюю оценку, используя не общий теорему Рамсея, а специфику геометрии сферы?
3. Верно ли утверждение, если заменить тупоугольность на остроугольность?
4. Как задача упростится, если мы будем рассматривать точки не на сфере, а на окружности?

Эта задача бросает вызов интуиции и требует как комбинаторной изобретательности, так и геометрического зрения. #математика #олимпиады #геометрия #комбинаторика #теория_вероятностей #math #geometry #задачи

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code




Share with your friend now:
tgoop.com/physics_lib/14478

View MORE
Open in Telegram


Telegram News

Date: |

With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. “[The defendant] could not shift his criminal liability,” Hui said. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations.
from us


Telegram Physics.Math.Code
FROM American