Warning: file_put_contents(aCache/aDaily/post/physics_lib/-14033-14034-14035-14036-14037-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Physics.Math.Code@physics_lib P.14037
PHYSICS_LIB Telegram 14037
Брахистохрона (от греч. βράχιστος «кратчайший» + χρόνος «время») — кривая скорейшего спуска. Задача о её нахождении была поставлена в июне 1696 года Иоганном Бернулли следующим образом:
Среди плоских кривых, соединяющих две данные точки A и B, лежащих в одной вертикальной плоскости ( B ниже A), найти ту, двигаясь по которой под действием только силы тяжести, сонаправленной отрицательной полуоси OY, материальная точка из A достигнет B за кратчайшее время.


Решением задачи о брахистохроне является дуга циклоиды с горизонтальным основанием, точка возврата которой находится в точке A, или иными словами, имеющая вертикальную касательную в точке A. Примечательно, что время спуска до нижней точки не зависит от расположения начальной точки на дуге циклоиды.

И да — это не дуга окружности, как думал ранее пытавшийся решить похожую задачу Галилео Галилей. Но что же могли сделать математики 17 века? Им было трудно. Изначально Бернулли предполагал, что решение найдется за полгода, однако затем был вынужден продлить соревнование еще на полтора. Первым на сцену вышел Исаак Ньютон, решивший задачу за одну ночь (он просто узнал про неё больше, чем через полгода). Посмотрев на анонимное решение Иоганн Бернулли воскликнул: "Узнаю льва по следу его когтя". В методе Ньютона используются чисто геометрические выводы, которые, кстати, окончательно не были строго обоснованы. Но в одном Великий был прав: кривая наискорейшего спуска является перевернутой циклоидой. #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry #вариационное_исчисление #интегральное_исчисление

💡 Physics.Math.Code // @physics_lib
👍81🔥2422😍4🆒2



tgoop.com/physics_lib/14037
Create:
Last Update:

Брахистохрона (от греч. βράχιστος «кратчайший» + χρόνος «время») — кривая скорейшего спуска. Задача о её нахождении была поставлена в июне 1696 года Иоганном Бернулли следующим образом:
Среди плоских кривых, соединяющих две данные точки A и B, лежащих в одной вертикальной плоскости ( B ниже A), найти ту, двигаясь по которой под действием только силы тяжести, сонаправленной отрицательной полуоси OY, материальная точка из A достигнет B за кратчайшее время.


Решением задачи о брахистохроне является дуга циклоиды с горизонтальным основанием, точка возврата которой находится в точке A, или иными словами, имеющая вертикальную касательную в точке A. Примечательно, что время спуска до нижней точки не зависит от расположения начальной точки на дуге циклоиды.

И да — это не дуга окружности, как думал ранее пытавшийся решить похожую задачу Галилео Галилей. Но что же могли сделать математики 17 века? Им было трудно. Изначально Бернулли предполагал, что решение найдется за полгода, однако затем был вынужден продлить соревнование еще на полтора. Первым на сцену вышел Исаак Ньютон, решивший задачу за одну ночь (он просто узнал про неё больше, чем через полгода). Посмотрев на анонимное решение Иоганн Бернулли воскликнул: "Узнаю льва по следу его когтя". В методе Ньютона используются чисто геометрические выводы, которые, кстати, окончательно не были строго обоснованы. Но в одном Великий был прав: кривая наискорейшего спуска является перевернутой циклоидой. #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry #вариационное_исчисление #интегральное_исчисление

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code


Share with your friend now:
tgoop.com/physics_lib/14037

View MORE
Open in Telegram


Telegram News

Date: |

fire bomb molotov November 18 Dylan Hollingsworth yau ma tei With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings. How to create a business channel on Telegram? (Tutorial) Write your hashtags in the language of your target audience. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms.
from us


Telegram Physics.Math.Code
FROM American