tgoop.com/physics_lib/13397
Last Update:
📙 Минимальные поверхности и функции ограниченной вариации [1989] Джусти Э.
💾 Скачать книгу
Минимальная поверхность — гладкая поверхность с нулевой средней кривизной. Название объясняется тем, что гладкая поверхность с заданным контуром, минимизирующая площадь, является минимальной. Однако не всякая минимальная поверхность минимизирует площадь среди поверхностей с заданным контуром.
Первые исследования минимальных поверхностей восходят к Лагранжу (1768), который рассмотрел следующую вариационную задачу: найти поверхность наименьшей площади, натянутую на данный контур. Предполагая искомую поверхность, задаваемую в виде z = f(x, y) , Лагранж определил, что эта функция должна удовлетворять уравнению Эйлера — Лагранжа. Позже Монж (1776) обнаружил, что условие минимальности площади поверхности влечёт, что её средняя кривизна равна нулю. Поэтому за поверхностями с H = 0 закрепилось название «минимальные». В действительности, однако, нужно различать понятия минимальной поверхности и поверхности наименьшей площади, так как условие H = 0 представляет собой лишь необходимое условие минимальности площади, вытекающее из равенства нулю 1-й вариации площади поверхности среди всех поверхностей с заданной границей.
#топология #геометрия #математика #функциональный_анализ #geometry #math #maths #science
💡 Physics.Math.Code // @physics_lib
BY Physics.Math.Code

Share with your friend now:
tgoop.com/physics_lib/13397