PHYSICS_LIB Telegram 13305
Media is too big
VIEW IN TELEGRAM
👩‍💻 Множество Мандельбро́та — множество точек c на комплексной плоскости, для которых рекуррентное соотношение
z ₙ ₊ ₁ = z ₙ ² + C при z₀ = 0 задаёт ограниченную последовательность. Иными словами, это множество таких c, для которых существует такое действительное R, что неравенство |z ₙ| < R выполняется при всех натуральных n. Определение и название принадлежат французскому математику Адриену Дуади, в честь математика Бенуа Мандельброта.
Множество Мандельброта является одним из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям. Его фрагменты не строго подобны исходному множеству, но при многократном увеличении определённые части всё больше похожи друг на друга.
Множество Мандельброта находит применение для анализа возникновения турбулентности в физике плазмы и термодинамике, развития бифуркаций и т. д.

Дауди и Хаббард доказали, что множество Мандельброта является связным, хотя в это и трудно поверить, глядя на хитрые системы мостов, соединяющие различные его части. Связность множества Мандельброта следует из того, что оно является пересечением вложенных связных компактных множеств.

Однако неизвестно, является ли оно локально связным. Эта известная гипотеза в комплексной динамике получила название MLC (англ. Mandelbrot locally connected). Многие математики прилагают усилия к её доказательству. Жан-Кристоф Иокко (Jean-Christophe Yoccoz) доказал, что гипотеза верна во всех точках с конечной ренормализацией, затем многие другие математики доказывали справедливость гипотезы во многих отдельных точках множества Мандельброта, но общая гипотеза остается недоказанной.

Мицухиро Шишикура (Mitsuhiro Shishikura) доказал, что размерность Хаусдорфа границы множества Мандельброта равна 2. Но остается неизвестным ответ на вопрос, имеет ли граница множества Мандельброта положительную меру Лебега на плоскости.

Число итераций для любой точки в построении множества очень близко к логарифму электрического потенциала, который возникает, если зарядить множество Мандельброта.
#математика #math #gif #animation #geometry #фракталы #тфкп

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍6416❤‍🔥128🔥64🤔2



tgoop.com/physics_lib/13305
Create:
Last Update:

👩‍💻 Множество Мандельбро́та — множество точек c на комплексной плоскости, для которых рекуррентное соотношение
z ₙ ₊ ₁ = z ₙ ² + C при z₀ = 0 задаёт ограниченную последовательность. Иными словами, это множество таких c, для которых существует такое действительное R, что неравенство |z ₙ| < R выполняется при всех натуральных n. Определение и название принадлежат французскому математику Адриену Дуади, в честь математика Бенуа Мандельброта.
Множество Мандельброта является одним из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям. Его фрагменты не строго подобны исходному множеству, но при многократном увеличении определённые части всё больше похожи друг на друга.
Множество Мандельброта находит применение для анализа возникновения турбулентности в физике плазмы и термодинамике, развития бифуркаций и т. д.

Дауди и Хаббард доказали, что множество Мандельброта является связным, хотя в это и трудно поверить, глядя на хитрые системы мостов, соединяющие различные его части. Связность множества Мандельброта следует из того, что оно является пересечением вложенных связных компактных множеств.

Однако неизвестно, является ли оно локально связным. Эта известная гипотеза в комплексной динамике получила название MLC (англ. Mandelbrot locally connected). Многие математики прилагают усилия к её доказательству. Жан-Кристоф Иокко (Jean-Christophe Yoccoz) доказал, что гипотеза верна во всех точках с конечной ренормализацией, затем многие другие математики доказывали справедливость гипотезы во многих отдельных точках множества Мандельброта, но общая гипотеза остается недоказанной.

Мицухиро Шишикура (Mitsuhiro Shishikura) доказал, что размерность Хаусдорфа границы множества Мандельброта равна 2. Но остается неизвестным ответ на вопрос, имеет ли граница множества Мандельброта положительную меру Лебега на плоскости.

Число итераций для любой точки в построении множества очень близко к логарифму электрического потенциала, который возникает, если зарядить множество Мандельброта.
#математика #math #gif #animation #geometry #фракталы #тфкп

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code


Share with your friend now:
tgoop.com/physics_lib/13305

View MORE
Open in Telegram


Telegram News

Date: |

The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. Write your hashtags in the language of your target audience. For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. Earlier, crypto enthusiasts had created a self-described “meme app” dubbed “gm” app wherein users would greet each other with “gm” or “good morning” messages. However, in September 2021, the gm app was down after a hacker reportedly gained access to the user data.
from us


Telegram Physics.Math.Code
FROM American