Notice: file_put_contents(): Write of 24178 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50
Physics.Math.Code@physics_lib P.13272
PHYSICS_LIB Telegram 13272
Media is too big
VIEW IN TELEGRAM
💫 Исследование электрических полей. Опыт по физике

Электрические и магнитные явления известны человечеству с античных времен, ведь все же видели молнию, и многие древние знали о магнитах, притягивающих некоторые металлы. Багдадская батарейка, изобретенная 4000 лет назад — одно из свидетельств того, что задолго до наших дней человечество электричеством пользовалось, и судя по всему знало как оно работает. Тем не менее, считается, что до начала 19 века электричество и магнетизм рассматривались всегда отдельно друг от друга, принимались как несвязанные между собой явления, и относились к различным разделам физики. Изучение магнитного поля началось в 1269 году, когда французский учёный Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли.

Эрстед в своих экспериментах только в 1819 году обнаружил отклонение стрелки компаса, расположенного вблизи проводника с током, и тогда ученым был сделан вывод о том, что существует некая взаимосвязь между электрическими и магнитными явлениями. Спустя 5 лет, в 1824 году, Ампер сумел математически описать взаимодействие токонесущего проводника с магнитом, а также взаимодействие проводников между собой, так появился Закон Ампера: «сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником». Относительно действия магнита на ток, Ампер предположил, что внутри постоянного магнита присутствуют микроскопические замкнутые токи, которые и создают магнитное поле магнита, взаимодействующее с магнитным полем токонесущего проводника. Еще через 7 лет, в 1831 году, Фарадей опытным путем обнаружил явление электромагнитной индукции, то есть ему удалось установить факт появления в проводнике электродвижущей силы в момент, когда на этот проводник действует изменяющееся магнитное поле. Смотрите - практическое применение явления электромагнитной индукции.

Например двигая постоянный магнит возле проводника, можно получить в нем пульсирующий ток, а подавая пульсирующий ток в одну из катушек, на общем железном сердечнике с которой находится вторая катушка, во второй катушке также появится пульсирующий ток. Через 33 года, в 1864 году, Максвелл сумел обобщить математически уже известные электрические и магнитные явления, - он создал теорию электромагнитного поля, согласно которой электромагнитное поле включает в себя взаимосвязанные электрическое и магнитное поля. Так, благодаря Максвеллу, стало возможным научное математическое объединение результатов предшествующих экспериментов в электродинамике.

Следствием этих важных выводов Максвелла явилось его предсказание о том, что в принципе любое изменение в электромагнитном поле должно порождать электромагнитные волны, которые распространяются в пространстве и в диэлектрических средах с некоторой конечной скоростью, которая зависит от магнитной и диэлектрической проницаемостей среды распространения волн. Для вакуума эта скорость оказалась равна скорости света, в связи с чем Максвелл предположил, что свет — это тоже электромагнитная волна, и данное предположение позже подтвердилось (хотя еще за долго до экспериментов Эрстеда на волновую природу света указывал Юнг). Максвелл же создал математическую основу электромагнетизма, и в 1884 году появились знаменитые уравнения Максвелла в современной форме. В 1887 году Герц подтвердит теорию Максвелла относительно электромагнитных волн: приемник зафиксирует посланные передатчиком электромагнитные волны. Изучением электромагнитных полей занимается классическая электродинамика. В рамках же квантовой электродинамики электромагнитное излучение рассматривается как поток фотонов, в котором электромагнитное взаимодействие переносится частицами-переносчиками — фотонами — безмассовыми векторными бозонами...

💡 Physics.Math.Code // @physics_lib
👍56🔥1663❤‍🔥3



tgoop.com/physics_lib/13272
Create:
Last Update:

💫 Исследование электрических полей. Опыт по физике

Электрические и магнитные явления известны человечеству с античных времен, ведь все же видели молнию, и многие древние знали о магнитах, притягивающих некоторые металлы. Багдадская батарейка, изобретенная 4000 лет назад — одно из свидетельств того, что задолго до наших дней человечество электричеством пользовалось, и судя по всему знало как оно работает. Тем не менее, считается, что до начала 19 века электричество и магнетизм рассматривались всегда отдельно друг от друга, принимались как несвязанные между собой явления, и относились к различным разделам физики. Изучение магнитного поля началось в 1269 году, когда французский учёный Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли.

Эрстед в своих экспериментах только в 1819 году обнаружил отклонение стрелки компаса, расположенного вблизи проводника с током, и тогда ученым был сделан вывод о том, что существует некая взаимосвязь между электрическими и магнитными явлениями. Спустя 5 лет, в 1824 году, Ампер сумел математически описать взаимодействие токонесущего проводника с магнитом, а также взаимодействие проводников между собой, так появился Закон Ампера: «сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником». Относительно действия магнита на ток, Ампер предположил, что внутри постоянного магнита присутствуют микроскопические замкнутые токи, которые и создают магнитное поле магнита, взаимодействующее с магнитным полем токонесущего проводника. Еще через 7 лет, в 1831 году, Фарадей опытным путем обнаружил явление электромагнитной индукции, то есть ему удалось установить факт появления в проводнике электродвижущей силы в момент, когда на этот проводник действует изменяющееся магнитное поле. Смотрите - практическое применение явления электромагнитной индукции.

Например двигая постоянный магнит возле проводника, можно получить в нем пульсирующий ток, а подавая пульсирующий ток в одну из катушек, на общем железном сердечнике с которой находится вторая катушка, во второй катушке также появится пульсирующий ток. Через 33 года, в 1864 году, Максвелл сумел обобщить математически уже известные электрические и магнитные явления, - он создал теорию электромагнитного поля, согласно которой электромагнитное поле включает в себя взаимосвязанные электрическое и магнитное поля. Так, благодаря Максвеллу, стало возможным научное математическое объединение результатов предшествующих экспериментов в электродинамике.

Следствием этих важных выводов Максвелла явилось его предсказание о том, что в принципе любое изменение в электромагнитном поле должно порождать электромагнитные волны, которые распространяются в пространстве и в диэлектрических средах с некоторой конечной скоростью, которая зависит от магнитной и диэлектрической проницаемостей среды распространения волн. Для вакуума эта скорость оказалась равна скорости света, в связи с чем Максвелл предположил, что свет — это тоже электромагнитная волна, и данное предположение позже подтвердилось (хотя еще за долго до экспериментов Эрстеда на волновую природу света указывал Юнг). Максвелл же создал математическую основу электромагнетизма, и в 1884 году появились знаменитые уравнения Максвелла в современной форме. В 1887 году Герц подтвердит теорию Максвелла относительно электромагнитных волн: приемник зафиксирует посланные передатчиком электромагнитные волны. Изучением электромагнитных полей занимается классическая электродинамика. В рамках же квантовой электродинамики электромагнитное излучение рассматривается как поток фотонов, в котором электромагнитное взаимодействие переносится частицами-переносчиками — фотонами — безмассовыми векторными бозонами...

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code


Share with your friend now:
tgoop.com/physics_lib/13272

View MORE
Open in Telegram


Telegram News

Date: |

It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart. Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. 4How to customize a Telegram channel? With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree."
from us


Telegram Physics.Math.Code
FROM American