PARTIALLY_UNSUPERVISED Telegram 203
Очередная (см. ранее) история ускорения, в которой не понадобились никакие знания алгоритмов.

Пилю на досуге одну задачку, которая в некотором смысле сводится к семантической сегментации. Правда, у этой сегментации есть несколько нюансов: несколько подзадач, у каждого семпла может быть подмножество масок, разного размера, но все довольно жирные (по ~30 мегабайт в PNG). Таким образом, первая версия пайплайна, которую я написал в лоб, не могла загрузить даже слабенькую GPU, подготовка батчей занимала слишком много времени, около секунды на семпл. Учитывая, что это все крутится на арендном железе, оставалась опция купить тачку с кучей CPU ядер, но я слишком жадный.

В общем, надо было как-то эффективнее перепаковать данные. Коллега посоветовал deeplake, и на первый взгляд он выглядел многообещающе. На практике же оказалось, что все красиво на бумаге, а с реальным датасетом все сильно хуже. Наверное, если бы мои картинки были всегда одинакового шейпа, а набор масок для семплов был бы одинаковым, все пошло бы гладко. Но мой датасет, собранный с бору по сосенке, был слишком неконсистентным, и через пару часов ковыряния с deeplake мне надоело придумывать костыли для инструмента, который вроде как должен упростить мне жизнь, а не усложнить.

Не будь у меня ограничений по диску, единожды перепаковать все каким-нибудь np.savez было бы эффективно: размен разового препроцессинага на быстрый IO. Но это бы раздуло датасет в несколько раз, тоже не очень. Есть np.savez_compressed, который еще и зипует, но он убивает все преимущества в скорости. Так я пришел к тому, что мне нужен аналог np.savez_compressed на стероидах.

Помимо древнего zip, есть и более современные алгоритмы быстрой компрессии, например, LZ4 или Zstandard. Я выбрал zstd (поверхностный гуглинг подсказал, что он более гибкий на спектре от быстрого до компактного сжатия) и написал сгенерил примерно пятнадцать строк простой обертки и еще чуть больше для скрипта препроцессинга.

Степень сжатия пока даже не тюнил, а выбрал наугад. В результате загрузка данных ускорилась примерно в четыре раза, а размер датасета вырос на 10% по сравнению с PNG.
🔥47👍136🦄1



tgoop.com/partially_unsupervised/203
Create:
Last Update:

Очередная (см. ранее) история ускорения, в которой не понадобились никакие знания алгоритмов.

Пилю на досуге одну задачку, которая в некотором смысле сводится к семантической сегментации. Правда, у этой сегментации есть несколько нюансов: несколько подзадач, у каждого семпла может быть подмножество масок, разного размера, но все довольно жирные (по ~30 мегабайт в PNG). Таким образом, первая версия пайплайна, которую я написал в лоб, не могла загрузить даже слабенькую GPU, подготовка батчей занимала слишком много времени, около секунды на семпл. Учитывая, что это все крутится на арендном железе, оставалась опция купить тачку с кучей CPU ядер, но я слишком жадный.

В общем, надо было как-то эффективнее перепаковать данные. Коллега посоветовал deeplake, и на первый взгляд он выглядел многообещающе. На практике же оказалось, что все красиво на бумаге, а с реальным датасетом все сильно хуже. Наверное, если бы мои картинки были всегда одинакового шейпа, а набор масок для семплов был бы одинаковым, все пошло бы гладко. Но мой датасет, собранный с бору по сосенке, был слишком неконсистентным, и через пару часов ковыряния с deeplake мне надоело придумывать костыли для инструмента, который вроде как должен упростить мне жизнь, а не усложнить.

Не будь у меня ограничений по диску, единожды перепаковать все каким-нибудь np.savez было бы эффективно: размен разового препроцессинага на быстрый IO. Но это бы раздуло датасет в несколько раз, тоже не очень. Есть np.savez_compressed, который еще и зипует, но он убивает все преимущества в скорости. Так я пришел к тому, что мне нужен аналог np.savez_compressed на стероидах.

Помимо древнего zip, есть и более современные алгоритмы быстрой компрессии, например, LZ4 или Zstandard. Я выбрал zstd (поверхностный гуглинг подсказал, что он более гибкий на спектре от быстрого до компактного сжатия) и написал сгенерил примерно пятнадцать строк простой обертки и еще чуть больше для скрипта препроцессинга.

Степень сжатия пока даже не тюнил, а выбрал наугад. В результате загрузка данных ускорилась примерно в четыре раза, а размер датасета вырос на 10% по сравнению с PNG.

BY partially unsupervised


Share with your friend now:
tgoop.com/partially_unsupervised/203

View MORE
Open in Telegram


Telegram News

Date: |

The Standard Channel The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. 6How to manage your Telegram channel? The Channel name and bio must be no more than 255 characters long
from us


Telegram partially unsupervised
FROM American