PARTIALLY_UNSUPERVISED Telegram 142
Недавно перезапустился широко известный в узких кругах Open ML Course, и, как человек, приложивший руку к его первой версии, я не могу об этом умолчать.

Первая версия курса (2017 год!) представляла из себя десяток лонгридов на Хабре, написанных разными людьми, и peer reviewed домашние задания к каждому из них. Ваш покорный слуга, например, писал главу про feature engineering и убил на нее часов сорок, если память не изменяет. Иронично, что в прошлом посте я как раз высказывал пророчества о том, что роль feature engineering угасает и продолжит угасать. С тех пор курс эволюционировал, были оффлайн лекции, переводы на английский, французский и китайский, публикации на альтернативных платформах (например, у англоязычной версии моей главы только на Медиуме было почти 50к просмотров) и многое другое - я особо не следил. В последний раз курс косвенно напомнил о себе, когда из-за этой старой статьи ко мне обратилось издательство Manning и попросило поревьювить соответствующий черновик одной из их книг.

Юра Кашницкий, который тащил это все с самого начала, ожидаемо наконец-то устал, и передал русскую версию Пете Ермакову, который уже давно тяготел больше к преподаванию, чем датасайнсу своими руками. Сейчас Петя пытается вдохнуть в него новую жизнь.

У меня неоднозначное отношение к курсу: по состоянию на 2022 его едва ли можно назвать исчерпывающим, и просто стряхнуть пыль может оказаться недостаточно. Тем не менее, для поверхностного понимания data science и machine learning он может пригодиться. Учитывая его бесплатность, я бы посоветовал рассмотреть его всем, кто собирался занести денег за аналогичные курсы в какую-нибудь недешевую школу для "вайтишников".
👍50🔥5👏2🤯1



tgoop.com/partially_unsupervised/142
Create:
Last Update:

Недавно перезапустился широко известный в узких кругах Open ML Course, и, как человек, приложивший руку к его первой версии, я не могу об этом умолчать.

Первая версия курса (2017 год!) представляла из себя десяток лонгридов на Хабре, написанных разными людьми, и peer reviewed домашние задания к каждому из них. Ваш покорный слуга, например, писал главу про feature engineering и убил на нее часов сорок, если память не изменяет. Иронично, что в прошлом посте я как раз высказывал пророчества о том, что роль feature engineering угасает и продолжит угасать. С тех пор курс эволюционировал, были оффлайн лекции, переводы на английский, французский и китайский, публикации на альтернативных платформах (например, у англоязычной версии моей главы только на Медиуме было почти 50к просмотров) и многое другое - я особо не следил. В последний раз курс косвенно напомнил о себе, когда из-за этой старой статьи ко мне обратилось издательство Manning и попросило поревьювить соответствующий черновик одной из их книг.

Юра Кашницкий, который тащил это все с самого начала, ожидаемо наконец-то устал, и передал русскую версию Пете Ермакову, который уже давно тяготел больше к преподаванию, чем датасайнсу своими руками. Сейчас Петя пытается вдохнуть в него новую жизнь.

У меня неоднозначное отношение к курсу: по состоянию на 2022 его едва ли можно назвать исчерпывающим, и просто стряхнуть пыль может оказаться недостаточно. Тем не менее, для поверхностного понимания data science и machine learning он может пригодиться. Учитывая его бесплатность, я бы посоветовал рассмотреть его всем, кто собирался занести денег за аналогичные курсы в какую-нибудь недешевую школу для "вайтишников".

BY partially unsupervised


Share with your friend now:
tgoop.com/partially_unsupervised/142

View MORE
Open in Telegram


Telegram News

Date: |

Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020. But a Telegram statement also said: "Any requests related to political censorship or limiting human rights such as the rights to free speech or assembly are not and will not be considered." How to Create a Private or Public Channel on Telegram? As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up.
from us


Telegram partially unsupervised
FROM American