PARTIALLY_UNSUPERVISED Telegram 142
Недавно перезапустился широко известный в узких кругах Open ML Course, и, как человек, приложивший руку к его первой версии, я не могу об этом умолчать.

Первая версия курса (2017 год!) представляла из себя десяток лонгридов на Хабре, написанных разными людьми, и peer reviewed домашние задания к каждому из них. Ваш покорный слуга, например, писал главу про feature engineering и убил на нее часов сорок, если память не изменяет. Иронично, что в прошлом посте я как раз высказывал пророчества о том, что роль feature engineering угасает и продолжит угасать. С тех пор курс эволюционировал, были оффлайн лекции, переводы на английский, французский и китайский, публикации на альтернативных платформах (например, у англоязычной версии моей главы только на Медиуме было почти 50к просмотров) и многое другое - я особо не следил. В последний раз курс косвенно напомнил о себе, когда из-за этой старой статьи ко мне обратилось издательство Manning и попросило поревьювить соответствующий черновик одной из их книг.

Юра Кашницкий, который тащил это все с самого начала, ожидаемо наконец-то устал, и передал русскую версию Пете Ермакову, который уже давно тяготел больше к преподаванию, чем датасайнсу своими руками. Сейчас Петя пытается вдохнуть в него новую жизнь.

У меня неоднозначное отношение к курсу: по состоянию на 2022 его едва ли можно назвать исчерпывающим, и просто стряхнуть пыль может оказаться недостаточно. Тем не менее, для поверхностного понимания data science и machine learning он может пригодиться. Учитывая его бесплатность, я бы посоветовал рассмотреть его всем, кто собирался занести денег за аналогичные курсы в какую-нибудь недешевую школу для "вайтишников".
👍50🔥5👏2🤯1



tgoop.com/partially_unsupervised/142
Create:
Last Update:

Недавно перезапустился широко известный в узких кругах Open ML Course, и, как человек, приложивший руку к его первой версии, я не могу об этом умолчать.

Первая версия курса (2017 год!) представляла из себя десяток лонгридов на Хабре, написанных разными людьми, и peer reviewed домашние задания к каждому из них. Ваш покорный слуга, например, писал главу про feature engineering и убил на нее часов сорок, если память не изменяет. Иронично, что в прошлом посте я как раз высказывал пророчества о том, что роль feature engineering угасает и продолжит угасать. С тех пор курс эволюционировал, были оффлайн лекции, переводы на английский, французский и китайский, публикации на альтернативных платформах (например, у англоязычной версии моей главы только на Медиуме было почти 50к просмотров) и многое другое - я особо не следил. В последний раз курс косвенно напомнил о себе, когда из-за этой старой статьи ко мне обратилось издательство Manning и попросило поревьювить соответствующий черновик одной из их книг.

Юра Кашницкий, который тащил это все с самого начала, ожидаемо наконец-то устал, и передал русскую версию Пете Ермакову, который уже давно тяготел больше к преподаванию, чем датасайнсу своими руками. Сейчас Петя пытается вдохнуть в него новую жизнь.

У меня неоднозначное отношение к курсу: по состоянию на 2022 его едва ли можно назвать исчерпывающим, и просто стряхнуть пыль может оказаться недостаточно. Тем не менее, для поверхностного понимания data science и machine learning он может пригодиться. Учитывая его бесплатность, я бы посоветовал рассмотреть его всем, кто собирался занести денег за аналогичные курсы в какую-нибудь недешевую школу для "вайтишников".

BY partially unsupervised


Share with your friend now:
tgoop.com/partially_unsupervised/142

View MORE
Open in Telegram


Telegram News

Date: |

While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. 5Telegram Channel avatar size/dimensions Telegram desktop app: In the upper left corner, click the Menu icon (the one with three lines). Select “New Channel” from the drop-down menu. Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. More>>
from us


Telegram partially unsupervised
FROM American