OPENDATASCIENCE Telegram 2632
Forwarded from Russian OSINT
🤔Экспериментальная модель 🖥Extract-0 за $196 превзошла 👩‍💻 GPT-4 и 👩‍💻 o3 в извлечении данных?

Исследователь Энрике Годой из 🇧🇷Бразилии представил ИИ-модель Extract-0, специализированную LLM с 7 миллиардами параметров, которая демонстрирует новый уровень эффективности в извлечении структурированной информации из документов. Согласно исследованию, данная языковая модель превосходит по производительности популярные универсальные модели, включая GPT-4.1, o3 и GPT-4.1-2025. Ресёрчер ставит под сомнение устоявшуюся парадигму, где доминирующим фактором эффективности считается исключительно масштаб модели.

Ключ к успеху Extract-0 кроется в новаторской трехэтапной методологии обучения, которая позволила достичь высокой точности при минимальных затратах. Процесс включает генерацию 280 128 синтетических примеров данных с сохранением контекстной памяти, параметроэффективную тонкую настройку (LoRA), затрагивающую всего 0.53% весов модели, и обучение с подкреплением (GRPO) с использованием семантической функции вознаграждения. Такой подход позволяет ИИ-агенту понимать смысловую эквивалентность данных, а не простое текстуальное совпадение.

В ходе тестирования на эталонном наборе из 1000 задач по извлечению информации Extract-0 достиг среднего показателя вознаграждения 0.573, значительно опередив GPT-4.1 (0.457) и o3 (0.464).

◀️Для адаптации ❗️ DeepSeek-R1-Distill-Qwen-7B применялся метод Low-Rank Adaptation (LoRA), который изменил всего 0.53% от общего числа параметров модели (40.4 млн из 7.66 млрд).

◀️Изначально базовая модель без дообучения имела средний результат 0.232 и валидность JSON на уровне 42.7%.

◀️После этапа контролируемой тонкой настройки (Supervised Fine-Tuning) производительность модели выросла до 0.507, а валидность JSON достигла 79.9%.

◀️Финальный этап обучения с подкреплением (GRPO) позволил достичь итогового результата в 0.573 со средней валидностью JSON в 89.0%, что представляет собой кумулятивное улучшение на 147.0% по сравнению с базовой моделью.


🖥 Примечательно, что общая стоимость всего цикла обучения модели на одном графическом процессоре NVIDIA H100 составила всего $196.

Цифры наглядно демонстрируют экономическую и техническую состоятельность целенаправленной оптимизации под конкретную задачу. Исследование убедительно пытается доказать, что узкоспециализированные ИИ-решения могут быть не только конкурентоспособными, но и более эффективными по сравнению с масштабируемыми моделями общего назначения.

👆Ограничение исследования коренится в его валидационной парадигме, которая оценивает производительность модели исключительно на in-distribution данных. Обучающий и тестовый наборы сэмплированы из одного и того же синтетического распределения, поэтому продемонстрованная высокая производительность не позволяет сделать надежных выводов о способности модели работать также эффективно в реальных условиях на практических задачах. Таким образом, полученные метрики обладают высокой внутренней валидностью (в рамках созданного синтетического мира), но их внешняя валидность (применимость к реальным задачам) остается под вопросом.

👀 В любом случае ознакомиться с исследованием не помешает.

@Russian_OSINT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🤔2🤡21



tgoop.com/opendatascience/2632
Create:
Last Update:

🤔Экспериментальная модель 🖥Extract-0 за $196 превзошла 👩‍💻 GPT-4 и 👩‍💻 o3 в извлечении данных?

Исследователь Энрике Годой из 🇧🇷Бразилии представил ИИ-модель Extract-0, специализированную LLM с 7 миллиардами параметров, которая демонстрирует новый уровень эффективности в извлечении структурированной информации из документов. Согласно исследованию, данная языковая модель превосходит по производительности популярные универсальные модели, включая GPT-4.1, o3 и GPT-4.1-2025. Ресёрчер ставит под сомнение устоявшуюся парадигму, где доминирующим фактором эффективности считается исключительно масштаб модели.

Ключ к успеху Extract-0 кроется в новаторской трехэтапной методологии обучения, которая позволила достичь высокой точности при минимальных затратах. Процесс включает генерацию 280 128 синтетических примеров данных с сохранением контекстной памяти, параметроэффективную тонкую настройку (LoRA), затрагивающую всего 0.53% весов модели, и обучение с подкреплением (GRPO) с использованием семантической функции вознаграждения. Такой подход позволяет ИИ-агенту понимать смысловую эквивалентность данных, а не простое текстуальное совпадение.

В ходе тестирования на эталонном наборе из 1000 задач по извлечению информации Extract-0 достиг среднего показателя вознаграждения 0.573, значительно опередив GPT-4.1 (0.457) и o3 (0.464).

◀️Для адаптации ❗️ DeepSeek-R1-Distill-Qwen-7B применялся метод Low-Rank Adaptation (LoRA), который изменил всего 0.53% от общего числа параметров модели (40.4 млн из 7.66 млрд).

◀️Изначально базовая модель без дообучения имела средний результат 0.232 и валидность JSON на уровне 42.7%.

◀️После этапа контролируемой тонкой настройки (Supervised Fine-Tuning) производительность модели выросла до 0.507, а валидность JSON достигла 79.9%.

◀️Финальный этап обучения с подкреплением (GRPO) позволил достичь итогового результата в 0.573 со средней валидностью JSON в 89.0%, что представляет собой кумулятивное улучшение на 147.0% по сравнению с базовой моделью.


🖥 Примечательно, что общая стоимость всего цикла обучения модели на одном графическом процессоре NVIDIA H100 составила всего $196.

Цифры наглядно демонстрируют экономическую и техническую состоятельность целенаправленной оптимизации под конкретную задачу. Исследование убедительно пытается доказать, что узкоспециализированные ИИ-решения могут быть не только конкурентоспособными, но и более эффективными по сравнению с масштабируемыми моделями общего назначения.

👆Ограничение исследования коренится в его валидационной парадигме, которая оценивает производительность модели исключительно на in-distribution данных. Обучающий и тестовый наборы сэмплированы из одного и того же синтетического распределения, поэтому продемонстрованная высокая производительность не позволяет сделать надежных выводов о способности модели работать также эффективно в реальных условиях на практических задачах. Таким образом, полученные метрики обладают высокой внутренней валидностью (в рамках созданного синтетического мира), но их внешняя валидность (применимость к реальным задачам) остается под вопросом.

👀 В любом случае ознакомиться с исследованием не помешает.

@Russian_OSINT

BY Data Science by ODS.ai 🦜




Share with your friend now:
tgoop.com/opendatascience/2632

View MORE
Open in Telegram


Telegram News

Date: |

End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation. Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. 4How to customize a Telegram channel?
from us


Telegram Data Science by ODS.ai 🦜
FROM American