tgoop.com/nn_for_science/2519
Last Update:
Визуальный разбор GPT-OSS 🧠⚙️
OpenAI выложила gpt-oss-20B и gpt-oss-120B - это MoE-модели с 128k контекстом и «ручкой» reasoning: low/medium/high. Плюс новый формат harmony для сообщений и тулколлов.
Зачем нам это сейчас 🔥
Впервые со времён GPT-2 у OpenAI появились LLM с открытыми весами: можно скачать веса, крутить локально, настраивать под свои пайплайны и политику данных.
Как все устроено простыми словами 🛠️
• Архитектура: трансформер с Mixture-of-Experts. В 120B — 128 экспертов, в 20B — 32, при этом на токен активны 4 (экономия времени/памяти без просадки качества на типичных задачах). Контекст — до ~128k токенов.
• Размер и железо: чекпоинты ≈ 60.8 GiB (120B) и 12.8 GiB (20B). Благодаря квантованию MXFP4 MoE-веса ужимаются так, что 120B помещается в 80 ГБ GPU, а 20B можно запускать от ~16 ГБ памяти.
• Формат harmony: «каналы» ответа — analysis (мышление/часть тулколлов), commentary (тулколлы), final (итог). Он нужен, чтобы модель корректно «думала» и вызывала инструменты.
• Reasoning modes: low/medium/high задаются в системном промпте и напрямую меняют бюджет размышлений: выше точность → дольше отвечает -> выше стоимость.
• Токенизатор: o200k_harmony—чуть аккуратнее с не-английскими символами/эмодзи, но датасет в основном англоязычный—держим это в голове для RU-кейсов.
Мини-пример: как «крутить ручку» рассуждений 🎚️
```
<|start|>system<|message|>
You are a helpful AI.
Reasoning: medium
Tools: web_search, python
<|end|>
```
Так вы буквально указываете модели «думать средне». Для A/B можно сравнить low/medium/high по задержке и качеству на своей задаче..
Почему это важно в большом контексте 🌍
• Локальные агенты и приватность: 20B реально тянется на доступном железе; можно строить оффлайн-ассистентов с чувствительными данными.
• Стандартизация интерфейса: harmony снимает боль разношёрстных промпт-форматов и упрощает перенос между рантаймами (vLLM/Ollama/и т.д.).
• Осознанный трейд-офф: режимы рассуждений позволяют тонко балансировать «скорость ↔ точность» и деньги. Пример с AIME в разборе у Джея: medium даёт правильный ответ, а high просто тратит больше токенов.
Как попробовать за час ⏱️
1. Запуск: возьмите 20B на локальной машине (≥16 ГБ RAM/VRAM) или арендуйте 80 ГБ GPU для 120B (или используйте провайдера с vLLM/Ollama).
2. Форматирование: подайте промпты в harmony (готовые рендереры — Python/Rust).
3. Эксперимент: замерьте на своей задаче low vs medium vs high (качество/латентность/стоимость) и выберите пресет под прод.
Пара важных оговорок 🧯
• CoT-трейсы (цепочки рассуждений) не показывайте пользователям без фильтрации/суммаризации — в модельной карте это отмечено отдельно.
• Мультиязычность неплохая, но датасет в основном EN—для чувствительных RU-кейсов планируйте адаптацию/дообучение.
Итого: GPT-OSS — это не «магический скачок», а грамотная инженерия плюс удобные стандарты. В сумме — ниже порог входа, выше контролируемость и понятный путь к локальным агентам.
Если было полезно — поделитесь с коллегами.
Лучше всего почитать блог пост в оригинале:
Джей Аламмар — визуальный разбор (очень наглядно) и про каналы/режимы рассуждений.
BY AI для Всех

Share with your friend now:
tgoop.com/nn_for_science/2519